Чем отличается однородное от неоднородного дифференциального уравнения
Перейти к содержимому

Чем отличается однородное от неоднородного дифференциального уравнения

  • автор:

В чем состоит разница между однородными и неоднородными диф. уравнениями. Виды уравнений.

Author24 — интернет-сервис помощи студентам

Здравствуйте, математики.
Помогите, пожалуйста, устранить кашу в голове и понять в чем разница между однородными уравнения и неоднородными диф.уравнениями. Какие бывают виды и тех и других. Например, я не могу понять, чем ОДУ 2ого порядка с переменными коэффициентами отличается от неоднородного уравнения 2ого порядка, например. Опыта в решении пока маловато, к сожалению, но стараюсь.

94731 / 64177 / 26122
Регистрация: 12.04.2006
Сообщений: 116,782
Ответы с готовыми решениями:

В чем состоит различие между магнетизмом и индукцией?
В чем состоит различие между магнетизмом и индукцией, в характере совершаемой ими работы в.

В чем состоит суть различие между операторами?
Начну вот с этих операторов ExitProcess(0); Applicaion.Terminate; halt(0);

В чем разница между С и С++
Возник вопрос в чем жи разница между С и С++ кроме того, что в С++ есть классы а в С их нету ?

В чем разница между \n и \r
Здравствуйте. Собственно вопрос в название темы. Объясните, в чем разница между /n и /r?

1891 / 1472 / 173
Регистрация: 16.06.2012
Сообщений: 3,342

Линейное уравнение n-го порядка с постоянными коэффициентами имеет вид , где .
Линейное уравнение n-го порядка с переменными коэффициентами имеет вид . Если , то уравнение называется однородным. В противном случае — неоднородным.
Так, — линейное однородное уравнение первого порядка с постоянными коэффициентами, — линейное неоднородное уравнение второго порядка с постоянными коэффициентами, — линейное однородное уравнение второго порядка с переменными коэффициентами, — линейное неоднородное уравнение первого порядка с переменными коэффициентами.

Эксперт C

27698 / 17315 / 3811
Регистрация: 24.12.2010
Сообщений: 38,979

ЦитатаСообщение от lion_wine Посмотреть сообщение

но стараюсь.

Похвально!
Однородное линейное — это когда все игреки и их производные в линеечку стоят. Могут быть и умноженными на функции от x. Типа того, что вам указал уважаемый Ellipsoid. Неоднородные — слева линейное, а справа f(x). Разделение чисто условное. Просто математикам так удобнее. И решение по разному получается. Обычно сначала решают однородное, потом находят какое-нибудь частное решение неоднородного, потом их соединяют и кричат «Ура!»

Добавлено через 1 минуту
ЗЫ. В «линеечку» — это значит без квадратов, кубов и прочей шушеры.

87844 / 49110 / 22898
Регистрация: 17.06.2006
Сообщений: 92,604
Помогаю со студенческими работами здесь

В чем разница между С++ и С?
Чем отличается С и С++, кроме того что С++ есть ООП?

В чем разница между [] и * ?
Думал, что ни в чем, но когда попытался сделать так: (в файле 1) char lc; в файле 2: extern.

В чем разница между X x; и X x()?
Корректный ли этот ответ?

В чем разница между . и ,
Вот столкнулся с таким вопросом вчем разница между . и , Привер <? echo.

Или воспользуйтесь поиском по форуму:

однородные и неоднородные дифференциальные уравнения

Пусть L(d/dx) — дифференциальный оператор. Тогда уравнение вида L(d/dx) y(x) = 0 называется однородным, а уравнение вида L(d/dx) y(x) = f(x) — неоднородным. Вот и вся разница. В первом из приведённых Вами уравнений нельзя выделить слагаемое, зависящее только от х, а во втором уравнении такое слагаемое есть (это x^2). Поэтому первое уравнение однородное, а второе — неоднородное.

Остальные ответы

Похожие вопросы

Линейные дифференциальные уравнения первого порядка.
Примеры решений

На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.

Начнем с систематизации и повторения.

На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь нужно проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.

Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.

Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.

Линейное уравнение первого порядка в стандартной записи имеет вид:

Что мы видим?
1) В линейное уравнение входит первая производная .
2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».
3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от «икс». В частности, может быть константой.

Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.

Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.

– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:

– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .

– Рядом с производной может находиться множитель , зависящий только от «икс»: – это тоже линейное уравнение.

Решить дифференциальное уравнение

Решение: данное уравнение является линейным и имеет простейший вид: .

Как решить линейное уравнение?

Существуют два способа решения. Первый способ – это так называемый метод вариации произвольной постоянной, если вас интересует именно он, пожалуйста, перейдите по ссылке. Второй способ связан с заменой переменной и подстановкой, иногда его называют методом Бернулли. В данной статье будет рассматриваться метод подстановки, он алгоритмически прост и понятен, и решение уравнения принимает чёткий трафаретный характер. Рекомендую начинающим.

В который раз у меня хорошая новость! Линейное дифференциальное уравнение можно решить одной-единственной заменой:

, где и – некоторые, пока ещё неизвестные функции, зависящие от «икс».

Коль скоро проводится замена , то нужно выяснить, чему равна производная. По правилу дифференцирования произведения:

Подставляем и в наше уравнение :

В чём состоит задача? Необходимо найти неизвестные функции «у» и «вэ», которые зависят от «икс». И как раз этому будут посвящены все последующие действия.

После подстановки смотрим на два слагаемых, которые располагаются вот на этих местах:

У них нужно вынести за скобки всё, что можно вынести. В данном случае:

Теперь нужно составить систему уравнений. Система составляется стандартно:

Приравниваем к нулю то, что находится в скобках: .

Если , тогда из нашего уравнения получаем: или просто .

Уравнения записываем в систему:
.

Именно в таком порядке.

Система опять же решается стандартно.

Сначала из первого уравнения находим функцию . Это простейшее уравнение с разделяющимися переменными, поэтому его решение я приведу без комментариев.

Функция найдена. Обратите внимание, что константу на данном этапе мы не приписываем.

Далее подставляем найденную функцию во второе уравнение системы :

Да тут ништяк, экспоненты сокращаются, и получается диффур, даже не простейший, а для студенток муз-педа.

Из второго уравнения находим функцию .

Функция найдена. А вот здесь уже добавляем константу .

Ха. А задача-то решена! Вспоминаем, с чего всё начиналось: .
Обе функции найдены:

Записываем общее решение:

В ответе можно раскрыть скобки, это дело вкуса:

Ответ: общее решение

Проверка выполняется по той же технологии, которую мы рассматривали на уроке Дифференциальные уравнения первого порядка.

Берём полученный ответ и находим производную:

Подставим и в исходное уравнение :

Получено верное равенство, таким образом, общее решение найдено правильно.

Найти общее решение дифференциального уравнения

Решение: данное уравнение имеет «классический» вид линейного уравнения. Проведем замену: и подставим и в исходное уравнение :

После подстановки проведем вынесение множителя за скобки, какие два слагаемых нужно мучить – смотрите предыдущий пример. Хотя, наверное, все уже поняли:

Составляем систему. Для этого приравниванием к нулю то, что находится в скобках: , автоматически получая и второе уравнение системы:

Из первого уравнения найдем функцию :

– найденную функцию подставим во второе уравнение системы :

Теперь находим функцию . Уравнение опять получилось простенькое:

Обе функции найдены:

Таким образом:
Общее решение:

Ответ: общее решение:

Желающие могут выполнить проверку, для проверки в ответе лучше предварительно раскрыть скобки.

Найти общее решение дифференциального уравнения

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Если у вас возникли (или возникнут) проблемы технического характера, пожалуйста, вернитесь к первому уроку Дифференциальные уравнения первого порядка.

Как видите, алгоритм решения линейного уравнения довольно прост. В чем особенность решения линейных уравнений? Особенность состоит в том, что практически всегда в ответе получается общее решение, в отличие, например, от однородных уравнений, где общее решение хорошо выражается крайне редко и ответ приходится записывать в виде общего интеграла.

Рассмотрим что-нибудь с дробями

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Напоминаю, что такая постановка вопроса также называется задачей Коши.

Решение: алгоритм решения полностью сохраняется, за исключением того, что в конце прибавится один небольшой пунктик.

Обратите внимание, что уравнение представлено не совсем в стандартной форме. Этого в данном случае можно не делать, но я все-таки рекомендую всегда переписывать уравнения в привычном виде :

Данное ДУ является линейным, проведем замену:

Типовой вынос за скобки:

Составим и решим систему:

Из первого уравнения найдем :

– подставим найденную функцию во второе уравнение системы и найдем функцию :

Обе функции найдены, таким образом, общее решение:

На заключительном этапе нужно решить задачу Коши, то есть найти частное решение, удовлетворяющее начальному условию . Как находить частное решения для диффура первого порядка, мы очень подробно рассмотрели на уроке Дифференциальные уравнения первого порядка.

В данном случае:

Ответ: частное решение:

А вот проверку частного решения еще раз повторим. Сначала проверяем, действительно ли выполняется начальное условие ?
– да, начальное условие выполнено.

Теперь берём полученный ответ и находим производную. Используем правило дифференцирования частного:

Подставим и в исходное уравнение :

Получено верное равенство, значит, задание выполнено верно.

Найти решение задачи Коши
,

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Перейдем к рассмотрению «частных видов» линейных уравнений, о которых шла речь в начале урока.

Найти решение задачи Коши для данного дифференциального уравнения
,

Решение: в данном уравнении слагаемые опять не на своих местах, поэтому сначала пытаемся максимально близко приблизить диффур к виду :

Что здесь особенного? Во-первых, в правой части у нас константа . Это допустимо. Во-вторых, рядом с производной есть множитель , который зависит только от «икс». Это тоже допустимо. Из-за этих особенностей линейное уравнение не перестает быть линейным.

Алгоритм решения полностью сохраняется за исключением пары нюансов в самом начале.

Теперь следовало бы выполнить вынесение множителя за скобки. Прозвучит каламбурно, но сначала нам нужно раскрыть скобку, поскольку одно из нужных нам слагаемых недоступно:

Вот теперь проводим вынесение множителя скобки:

Обратите внимание на тот факт, что за скобки мы вынесли не только функцию , но еще и «икс». Всё, что можно вынести за скобки – выносим.

Составим и решим систему:

Из первого уравнения найдем :

– подставим во второе уравнение системы:

Таким образом, общее решение:

Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Найти частное решение ДУ
,

Это пример для самостоятельного решения.

Какие трудности встречаются в ходе решения линейного уравнения? Основной камень преткновения состоит в том, что может появиться довольно сложный интеграл. Как правило, неприятный интеграл появляется при нахождении функции (в то время как с нахождением функции обычно проблем не возникает).

Рассмотрим пару примеров с такими интегралами.

Найти общее решение ДУ

Решение: сначала приводим линейное уравнение к родному виду :

Уравнение кажется простым, но, как я уже отмечал, впечатление может быть обманчивым. Не редкость, когда «страшный» диффур на самом деле оказывается несложным, а «легкий» на вид диффур вызывает мучительную боль за бесцельно прожитые часы.

Составим и решим систему:
.

Из первого уравнения найдем :

– подставим найденную функцию во второе уравнение:

Такой интеграл, кстати, еще нигде не встречался в моих уроках. Он берется по частям. Вспоминаем формулу интегрирования по частям: . Но, вот незадача, буквы и у нас уже заняты, и использовать те же самые буквы в формуле – не есть хорошо. Что делать? Используем ту же формулу, но с другими буквенными обозначениями. Можно выбрать любые другие буквы, я привык записывать правило с «а» и «бэ»:

Интегрируем по частям:

Если возникли трудности или недопонимание, освежите знания на уроках Метод замены переменной и Интегрирование по частям.

Ответ: общее решение:

Давненько я не вспоминал интегрирование по частям, даже ностальгия появилась. А поэтому еще один пример для самостоятельного решения. Какой пример? Конечно же, с логарифмом! Ну а чего еще от меня можно было ожидать? =)

Найти общее решение дифференциального уравнения

В предложенном примере проявлена небольшая вольность для любознательных фанатов матана. Нет, алгоритм остался точно таким же, просто я сразу начал решать диффур, не перенеся предварительно в правую часть. Полное решение и ответ в конце урока.

В моей коллекции есть уравнения и с более трудными интегралами, но сейчас речь идет о дифференциальных уравнениях. В этой связи я намеренно не включил в урок такие задачи, все-таки интегралы изучаются в другой теме.

Надеюсь, мои примеры и объяснения были полезны, до скорых встреч!

Решения и ответы:

Пример 3. Решение: данное уравнение является линейным неоднородным, проведем замену:

Составим и решим систему:

Из первого уравнения найдем :

– подставим во второе уравнение системы:

Таким образом:
Ответ: общее решение:

Пример 5. Решение: данное уравнение является линейным неоднородным, замена:

Составим и решим систему:
.
Из первого уравнения найдем :

– подставим во второе уравнение системы:

Общее решение:
Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 7. Решение: данное уравнение является линейным неоднородным, замена:

(раскрыли только левые скобки!)

Составим и решим систему:
.
Из первого уравнения найдем :

– подставим во второе уравнение:
(Примечание: здесь использовано основное логарифмическое тождество: ).

Таким образом, общее решение:

Найдем частное, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 9. Решение: данное ДУ является линейным, проведем замену:

Решим систему:

Из первого уравнения найдем :

– подставим во второе уравнение:

Интегрируем по частям:

Таким образом:
Ответ: общее решение:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Однородные дифференциальные уравнения первого порядка

На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменными и линейными неоднородными уравнениями этот тип ДУ встречается практически в любой контрольной работе по теме диффуров. Если Вы зашли на страничку с поисковика или не очень уверенно ориентируетесь в дифференциальных уравнениях, то сначала настоятельно рекомендую проработать вводный урок по теме – Дифференциальные уравнения первого порядка. Дело в том, что многие принципы решения однородных уравнений и используемые технические приемы будут точно такими же, как и для простейших уравнений с разделяющимися переменными.

В чём отличие однородных дифференциальных уравнений от других типов ДУ? Это проще всего сразу же пояснить на конкретном примере.

Решить дифференциальное уравнение

Решение: что в первую очередь следует проанализировать при решении любого дифференциального уравнения первого порядка? В первую очередь нужно проверить, а нельзя ли сразу разделить переменные с помощью «школьных» действий? Обычно такой анализ проводят мысленно или пытаются разделить переменные на черновике.

В данном примере переменные разделить нельзя (можете попробовать поперекидывать слагаемые из части в часть, повыносить множители за скобки и т. д.). Кстати, в данном примере, тот факт, что переменные разделить нельзя, достаточно очевиден ввиду наличия множителя .

Возникает вопрос – как же решить этот диффур?

Нужно проверить, а не является ли данное уравнение однородным? Проверка несложная, и сам алгоритм проверки можно сформулировать так:

В исходное уравнение:

вместо подставляем , вместо подставляем , производную не трогаем:

Буква лямбда – это условный параметр, и здесь он играет следующую роль: если в результате преобразований удастся «уничтожить» ВСЕ лямбды и получить исходное уравнение, то данное дифференциальное уравнение является однородным.

Очевидно, что лямбды сразу сокращаются в показателе степени:

Теперь в правой части выносим лямбду за скобки:

и обе части делим на эту самую лямбду:

В результате все лямбды исчезли как сон, как утренний туман, и мы получили исходное уравнение.

Вывод: Данное уравнение является однородным

Поначалу рекомендую проводить рассмотренную проверку на черновике, хотя очень скоро она будет получаться и мысленно.

Как решить однородное дифференциальное уравнение?

У меня очень хорошая новость. Абсолютно все однородные уравнения можно решить с помощью одной-единственной (!) стандартной замены.

Функцию «игрек» следует заменить произведением некоторой функции (тоже зависящей от «икс») и «икса»:

, почти всегда пишут коротко:

Выясняем, во что превратится производная при такой замене, используем правило дифференцирования произведения. Если , то:

Подставляем и в исходное уравнение :

Что даст такая замена? После данной замены и проведенных упрощений мы гарантировано получим уравнение с разделяющимися переменными. ЗАПОМИНАЕМ как первую любовь:) и, соответственно, .

После подстановки проводим максимальные упрощения:

Далее алгоритм работает по накатанной колее уравнения с разделяющимися переменными.

Поскольку – это функция, зависящая от «икс», то её производную можно записать стандартной дробью: .
Таким образом:

Разделяем переменные, при этом в левой части нужно собрать только «тэ», а в правой части – только «иксы»:

Переменные разделены, интегрируем:

Согласно моему первому техническому совету из статьи Дифференциальные уравнения первого порядка, константу во многих случаях целесообразно «оформить» в виде логарифма.

После того, как уравнение проинтегрировано, нужно провести обратную замену, она тоже стандартна и единственна:
Если , то
В данном случае:

В 18-19 случаях из 20 решение однородного уравнения записывают в виде общего интеграла.

Ответ: общий интеграл:

Почему почти всегда ответ однородного уравнения даётся в виде общего интеграла?
В большинстве случаев невозможно выразить «игрек» в явном виде (получить общее решение), а если и возможно, то чаще всего общее решение получается громоздким и корявым.

Так, например, в рассмотренном примере, общее решение получить можно, навешиваем логарифмы на обе части общего интеграла:

– ну, еще куда ни шло. Хотя, согласитесь, все равно кривовато.

Кстати, в данном примере я не совсем «прилично» записал общий интеграл. Это не ошибка, но в «хорошем» стиле, напоминаю, общий интеграл принято записывать в виде . Для этого сразу после интегрирования уравнения, константу следует записать без всякого логарифма (вот и исключение из правила!):

И после обратной замены получить общий интеграл в «классическом» виде:

Полученный ответ можно проверить. Для этого его нужно продифференцировать, то есть найти производную от функции, заданной неявно:

Избавляемся от дробей, умножая каждую часть уравнения на :

Получено исходное дифференциальное уравнение, значит, решение найдено правильно.

Желательно всегда проводить проверку. Но однородные уравнения неприятны тем, что проверять их общие интегралы обычно трудно – для этого необходима весьма и весьма приличная техника дифференцирования. В рассмотренном примере в ходе проверки уже пришлось находить не самые простые производные (хотя сам по себе пример достаточно простой). Если сможете проверить – проверяйте!

Следующий пример для самостоятельного решения – чтобы вы освоились в самом алгоритме действий:

Проверить уравнение на однородность и найти его общий интеграл.

Ответ записать в виде , выполнить проверку.

. Тут тоже получилась довольно простенькая проверка.

А теперь обещанный важный момент, упомянутый ещё в самом начале темы,
выделю жирными чёрными буквами:

Если в ходе преобразований мы «сбрасываем» множитель с переменной в знаменатель, то РИСКУЕМ потерять решения!

И на самом деле с этим мы столкнулись в первом же примере вводного урока о дифференциальных уравнениях. В процессе решения уравнения «игрек» оказался в знаменателе: , но , очевидно, является решением ДУ и в результате неравносильного преобразования (деления) есть все шансы его потерять! Другое дело, что оно вошло в общее решение при нулевом значении константы. Сброс «икса» в знаменатель тоже можно не принимать во внимание, т. к. не удовлетворяет исходному диффуру.

Аналогичная история с третьим уравнением того же урока, в ходе решения которого мы «сбросили» в знаменатель. Строго говоря, здесь следовало проверить, а не является ли решением данного диффура? Ведь является! Но и тут «всё обошлось», поскольку эта функция вошла в общий интеграл при .

И если с «разделяющимися» уравнениями такое часто 😉 «прокатывает», то с однородными и некоторыми другими диффурами может и «не прокатить». С высокой вероятностью.

Проанализируем уже прорешанные задачи этого урока: в Примерах 1-2 «сброс» икса тоже оказался безопасен, ибо там есть и , а посему сразу понятно, что не может быть решением. Кроме того, в Примере 2 в знаменателе оказался , и здесь мы рисковали потерять функцию , которая, очевидно, удовлетворяет уравнению . Однако, и тут «пронесло», т. к. она вошла в общий интеграл при нулевом значении константы.

Но «счастливые случаи» я, конечно же, устроил специально, и не факт, что на практике попадутся именно они:

Решить дифференциальное уравнение

Не правда ли простой пример? 😉

Решение: однородность этого уравнения очевидна, но всё равно – на первом шаге ОБЯЗАТЕЛЬНО проверяем, нельзя ли разделить переменные. Ибо уравнение тоже однородно, но переменные в нём преспокойно разделяются. Да, бывают и такие!

После проверки на «разделяемость» проводим замену и максимально упрощаем уравнение:

Разделяем переменные, слева собираем «тэ», справа – «иксы»:

И вот здесь СТОП. При делении на мы рискуем потерять сразу две функции. Так как , то это функции:

Первая функция, очевидно, является решением уравнения . Проверяем вторую – подставляем и её производную в наш диффур:

– получено верное равенство, значит, функция тоже является решением.

И эти решения мы рискуем потерять.

Кроме того, в знаменателе оказался «икс», и поэтому обязательно проверяем, не является ли решением исходного дифференциального уравнения. Нет, не является.

Берём всё это на заметку и продолжаем:

Надо сказать, с интегралом левой части повезло, бывает гораздо хуже.

Перед обратной заменой максимально упрощаем общий интеграл. Если есть дроби, то от них лучше избавиться, умножаем каждую часть на 2:

Константу я переобозначу через :

(если этот момент не понятен, читайте статью Дифференциальные уравнения первого порядка)

Собираем в правой части единый логарифм, и сбрасываем оковы:

И вот только теперь обратная замена :

Умножим все слагаемые на :

Теперь следует проверить – вошли ли в общий интеграл «опасные» решения . Да, оба решения вошли в общий интеграл при нулевом значении константы: , поэтому их не нужно дополнительно указывать в ответе:

Проверка. Даже не проверка, а сплошное удовольствие:)

Получено исходное дифференциальное уравнение, значит, решение найдено верно.

Для самостоятельного решения:

Выполнить проверку на однородность и решить дифференциальное уравнение

Общий интеграл проверить дифференцированием.

Полное решение и ответ в конце урока.

Рассмотрим ещё пару типовых примеров:

Решить дифференциальное уравнение

Решение будем привыкать оформлять компактнее. Сначала мысленно либо на черновике убеждаемся в том, что переменные тут разделить нельзя, после чего проводим проверку на однородность – на чистовике её обычно не проводят (если специально не требуется). Таким образом, почти всегда решение начинается с записи: «Данное уравнение является однородным, проведем замену: …».

. замену , и идём проторенной дорогой:

С «иксом» тут всё в порядке, но вот что с квадратным трёхчленом? Поскольку он неразложим на множители: , то решений мы точно не теряем. Всегда бы так! Выделяем в левой части полный квадрат и интегрируем:

Упрощать тут нечего, а посему обратная замена :

Ответ: общий интеграл:

Следующий пример для самостоятельного решения:

Решить дифференциальное уравнение

. Казалось бы похожие уравнения, ан нет – Большая разница 😉

И сейчас начинается самое интересное! Сначала разберёмся, как быть, если однородное уравнение задано с готовыми дифференциалами:

Решить дифференциальное уравнение

Это очень интересный пример, прямо целый триллер!

Решение: если однородное уравнение содержит готовые дифференциалы, то его можно решить модифицированной заменой:

Но я не советую использовать такую подстановку, поскольку получится Великая китайская стена дифференциалов, где нужен глаз да глаз. С технической точки зрения выгоднее перейти к «штриховому» обозначению производной, для этого делим обе части уравнения на :

И уже здесь мы совершили «опасное» преобразование! Нулевому дифференциалу соответствует – семейство прямых, параллельных оси . Являются ли они корнями нашего ДУ? Подставим и в исходное уравнение:

Данное равенство справедливо, если , то есть при делении на мы рисковали потерять решение , и мы его потеряли – так как оно уже не удовлетворяет полученному уравнению .

Следует заметить, что если бы нам изначально было дано уравнение , то о корне речи бы не шло. Но у нас он есть, и мы его вовремя «отловили».

Продолжаем решение стандартной заменой :
:

После подстановки максимально упрощаем уравнение:

И вот здесь снова СТОП: при делении на мы рискуем потерять две функции. Так как , то это функции:

Очевидно, что первая функция является решением уравнения . Проверяем вторую – подставляем и её производную :

– получено верное равенство, значит, функция тоже является решением дифференциального уравнения.

И при делении на мы эти решения рискуем потерять. Впрочем, они могут войти в общий интеграл. Но могут и не войти

Берём это на заметку и интегрируем обе части:

Интеграл левой части стандартно решается с помощью выделения полного квадрата, но в диффурах гораздо удобнее использовать метод неопределенных коэффициентов:

Используя метод неопределенных коэффициентов, разложим подынтегральную функцию в сумму элементарных дробей:

– так как у нас нарисовались одни логарифмы, то константу тоже заталкиваем под логарифм.

Перед обратной заменой снова упрощаем всё, что можно упростить:

И обратная замена :

Теперь вспоминаем о «потеряшках»: решение вошло в общий интеграл при , а вот – «пролетело мимо кассы», т. к. оказалось в знаменателе. Поэтому в ответе оно удостаивается отдельной фразы, и да – не забываем о потерянном решении , которое, к слову, тоже оказалось внизу.

Ответ: общий интеграл: . Ещё решения:

Здесь не так трудно выразить общее решение:
, но это уже понты.

Удобные, впрочем, для проверки. Найдём производную:

и подставим в левую часть уравнения:

– в результате получена правая часть уравнения, что и требовалось проверить.

Теперь квест с корнями, это тоже распространенный и очень коварный случай:

Решить дифференциальное уравнение

Решение: устно убеждаемся, что уравнение однородно и подставляем первую любовь , в исходное уравнение:

И опасность нас поджидает уже тут. Дело в том, что , и этот факт очень легко упустить из виду:

Теперь раскрываем модуль, в результате чего получаются две ветки решения:
, если , и
, если .

Обе ветки удобно записать единым уравнением, при этом возможны следующие варианты оформления:
, где «сигнум икс» – специальная функция, которая возвращает знак «икс»: , пользуйтесь смело, это известная функция.

Второй способ более привычен, выберу его в качестве рабочего варианта:
, но здесь ОБЯЗАТЕЛЬНО нужен комментарий о том, что знак «+» соответствует случаю , а знак «–» – случаю .

Внимание! Функцию или знаки «отрывать» от корня нельзя! Это может закончиться фатальной ошибкой. Поэтому при разделении переменных знаки мигрируют вместе с корнем в левую часть:
(контролируем, что – не решение)
навешиваем интегралы:

и сейчас вторая новинка, на этот раз по теме «Интегралы». Интеграл , как многие помнят, равен табличному «длинному» логарифму , а интеграл от не только тому же логарифму со знаком «минус», но и его «собрату»: . Желающие могут проверить этот факт дифференцированием.

И в нашем случае общий интеграл удобно записать так:

Упаковываем логарифмы правой части:

…возможно, у некоторых возник вопрос, почему я иногда вдруг убираю модуль под логарифмом? Причина проста – выражение под знаком логарифма, в данном случае , положительно, а значит, модуль записывать не обязательно.

и вот только теперь обратная замена :

Под корнем приведём слагаемые к общему знаменателю:

и небольшое чудо: поскольку , то в результате раскрытия модуля у нас появляются те же два случая со знаками :

после чего «минусы» сокращаются:

Таким образом, потеря второй ветки решения () нам бы здесь тоже «сошла с рук», но так, разумеется, бывает не всегда, и эту ветку можно реально потерять.

И заключительный штрих, сбрасываем на нижний этаж левой части:

Ответ: общий интеграл:

Я выполнил проверку общего интеграла, но приводить её не буду, а то вы больше не придете к такому маньяку. Да, попробуйте для интереса найти производную. Времяпровождение получите из разряда тех, о которых долго вспоминают. И гордятся.

И в заключение урока своего рода экзаменационный пример:

Решить дифференциальное уравнение

Проконтролируйте, всё ли вы правильно поняли, всё ли учли.

Итак:

при неравносильных преобразованиях ВСЕГДА проверяйте (по крайне мере, устно), не теряете ли вы решения! Какие это преобразования? Как правило, сокращение на что-то, деление на что-то, вынесение из-под корня / внесение под корень. Так, например, при делении на нужно проверить, не являются ли функции решениями дифференциального уравнения. В то же время при делении на надобность такой проверки отпадает – по причине того, что этот делитель не обращается в ноль.

Если проводится замена и есть квадратный корень, то легче лёгкого потерять одну из веток решения, поэтому не забываем про модуль: , и далее сохраняем знаки при корне, несоблюдение этого правила может привести к ошибочному ответу.

Вот ещё одна опасная ситуация:

Здесь, избавляясь от , следует проверить, не является ли решением исходного ДУ. Часто в качестве такого множителя встречается «икс», «игрек», и сокращая на них, мы теряем функции , которые могут оказаться решениями.

С другой стороны, если что-то ИЗНАЧАЛЬНО находится в знаменателе, то повода для такого беспокойства нет. Так, в однородном уравнении можно не беспокоиться о функции , так как она изначально «заявлена» в знаменателе.

Перечисленные тонкости не теряют актуальность, даже если в задаче требуется найти только частное решение. Существует пусть маленький, но шанс, что мы потеряем именно требуемое частное решение. Правда, задача Коши в практических заданиях с однородными уравнениями запрашивается довольно редко (уж не знаю, почему). Тем не менее, такие примеры есть в статье Уравнения сводящиеся к однородным, которую я рекомендую изучить «по горячим следам» чтобы закрепить свои навыки решения.

Существуют и более сложные однородные уравнения. Сложность состоит не в замене переменной или упрощениях, а в достаточно трудных или редких интегралах, которые возникают в результате разделения переменных. У меня есть примеры решений таких однородных уравнений – страшненькие интегралы и страшненькие ответы. Но о них не будем, потому что на ближайших уроках (см. ниже) ещё успею вас замучить я хочу вас видеть свежими и оптимистичными!

Решения и ответы:

Пример 2. Решение: проверим уравнение на однородность, для этого в исходное уравнение вместо подставим , а вместо подставим :

В результате получено исходное уравнение, значит, данное ДУ является однородным.

Проведем замену:
Подставим и в исходное уравнение:

Разделяем переменные и интегрируем:

Перед обратной заменой результат целесообразно упростить:

Ответ: общий интеграл:

Проверка: дифференцируем ответ:

умножаем обе части на :

и делим на :

– получено исходное ДУ, значит, общий интеграл найден верно.

Пример 4. Решение: проверим уравнение на однородность:

Таким образом, данное уравнение является однородным.
Проведем замену:

После подстановки проводим максимальные упрощения:

Разделяем переменные и интегрируем:

Контроль:
– не является решением уравнения ,
а вот , очевидно, является.
Интегрируем:

и перед обратной заменой записываем уравнение как можно компактнее:

Проведём обратную замену :

Решение в общий интеграл не вошло, и поэтому его следует дополнительно прописать в ответе:

общий интеграл: . Ещё одно решение:

Проверка:

– в результате получено исходное дифференциальное уравнение, значит, решение найдено верно.

Пример 6. Решение: данное ДУ является однородным, проведем замену :

Контроль: не является решением, а вот трёхчлен раскладывается на множители: , и поэтому в поле нашего пристального внимания попадают две функции:

Обе функции являются корнями ДУ (проверьте самостоятельно), и в результате деления мы рискуем потерять эти решения!

Берём их на заметку и продолжаем:

Методом неопределенных коэффициентов получим сумму дробей:

Получившийся общий интеграл упрощаем:

И после упрощений выполняем обратную замену :

На последнем рубеже вспоминаем о «потеряшках»: функция вошла в общий интеграл (при ), однако – НЕ вошла, и поэтому её необходимо приписать дополнительно:

Ответ: общий интеграл: . Еще одно решение:

Пример 9. Решение: разделим обе части на :

! является решением исходного уравнения.

Данное уравнение является однородным, проведем замену :

Разделяем переменные, при этом функцию следует обязательно оставить при корне:

(поскольку , если )

Контроль: оказался в знаменателе, а значит, проверке подлежит функция . Подставляем её вместе с её производной в исходное уравнение:
– получено верное равенство, значит, – это одно из решений ДУ.

Решение не вошло в общий интеграл, и поэтому его следует дополнительно указать в ответе.
Ответ: общий интеграл: , ещё решения: .

Примечание: если по условию требуется найти частное решение, например, с начальным условием , то следует выбрать нужную ветку: (т. к. «икс» равно ) и выполнить подстановку: – искомый частный интеграл.

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *