Чем больше разрядность шины данных тем
Перейти к содержимому

Чем больше разрядность шины данных тем

  • автор:

Что означает разрядность шины видеокарты?

общем-то, эти самые биты определяют разрядность шины данных и действительно порой существенно определяют скорость работы видеокарты. Шина видеопамяти определяет, насколько больше или меньше информации может пропустить видеокарта от графического процессора к блоку памяти устройства. Можно сравнить разрядность шины с толщиной водопроводной трубы: чем труба толще (больше разрядность), тем больше информации передается от видеочипа к памяти. Соответственно, это способствует увеличению производительности.

Однако сегодня это один из самых известных и популярных при торговле видеокартами параметров, которым умело манипулируют продавцы, «забывая» о прочих характеристиках, влияющих на пропускную способность видеокарты.

snaipere99Ученик (180) 3 года назад

Простыми словами, чем больше бит, тем шире шина, тем больше пропускная способность памяти .
Чем производительнее видео процессор GPU, тем шире нужна шина памяти .

Это пропускная способность шины памяти (бит на такт). Не имеет никакого значения в отрыве от других данных, т. к. пропускная способность шины зависит не только от разрядности, но и частоты, кол-ва каналов.
Любую видеокарту можно считать «игровой», на любой можно запустить те или иные игры.
Даже при равной частоте и разрядности пропускная способность памяти может сильно отличаться:

От ширины шины зависит скорость обмена данными между процессором и памятью. Да, можно считать видеокарту игровой с шиной 192 бит. Чем меньше битность — тем медленнее видеокарта.

unknxwnМудрец (12086) 3 года назад

Почему медленнее? Шина широкая будет для мощной видеокарты бесполезна, разве что если карточке не хватает видеопамяти, и она из ОЗУ черпает. Да и с годами придумывают более эффективные алгоритмы передачи информации, поэтому шина сейчас все уже и уже. Это все равно, что сравнивать 574 и 5600хт, на 574 шина шире, и что? Разве она мощнее?

Сергей Никольский Мыслитель (5461) kcas, Естественно сравнивать шины в видеокартах разных поколений некорректно. А видеокарты, относящиеся к игровым никогда не будут иметь шину в 64 бит. Самые плохонькие начинаются со 128ми. Так что, да 750Ti и 192 бит можно считать игровой) хотя и старенькая она уже.

Если речь идет об НВИ. то игровыми были всегда начиная с Х60 серии карт, будто то гт260-560-760-1060-2060 и выше Х60. разрядность шины памяти редко указывает на их скорость обычно да чем выше тем скорость якобы выше, но опять же смотря с чем сарванивать 256бит ДДР3 или 128бит ДДР5 или с 64битами уже ДДР6 видеопамяти, в рамках одного типа памяти да чем выше тем лучше. А все серии Х50 карт от нви так ни рыба не мясо и вроде не офис карта, но игровой язык не повернется назвать. и разрядность как и озу должна быть картной 8-16-32-64-128-256-512бит, так проще оперерировать даными и выше скорость, сравни на гт 760 уже 256бит шина, а у гт 260 512бит, а какая была у гт250 или вот у тебя гт 750 192бит, не на что не наводит мысль? а все просто сдох блок и его выключили сделав гт750.

B.2. Разрядность процессора.

Важным свойством микропроцессора является разрядность его шины данных и адреса. Выясним, почему это так.

Важнейшим параметром, определяющим скорость работы любого процессора, является тактовая частота. Она представляет собой импульсы прямоугольной формы, с которой синхронизируются все операции процессора. По другому тактовая частота называется частотой синхроимпульсов. Тактовой же частотой она называется потому, что любая операция в процессоре не может быть выполнена быстрее, чем за один такт (период) синхроимпульсов.

С объединением элементов процессора в один кристалл наиболее узким местом в производительности процессора стала не пересылка данных между элементами процессора, а скорость обмена данными между процессором и остальными устройствами по шине. Поскольку любая операция, в том числе и пересылка данных, не может происходить быстрее, чем за такт, логично предположить. что желательно передавать как можно больше информации за один такт. Так как единицей информации является один бит (двоичный разряд), то, чем больше передается разрядов за один такт (по шине данных), тем быстрее работает процессор.

С разрядностью шины адреса немного сложнее. Дело в том, что вся адресуемая память компьютера пронумерована побайтно. Поэтому для обращения процессора к памяти ему необходимо запросить адрес нужных данных по адресной шине. Разрядность шины адреса определяет максимальный номер байта, который может быть затребован процессором. Так, при 8-ми разрядной шине возможна адресация 256 байт, при 16-ти разрядной – 64 Кбайт, а при 32-х разрядной – 4 Гбайт.

Между шиной адреса и шиной данных есть эмпирическое соотношение: чем больше процессор должен адресовать памяти (т.е. чем больше разрядность шины адреса), тем быстрее они должны поступать в процессор. Следовательно, тем шире шина данных. Однако на разрядность шин накладывается технологическое ограничение: чем шире шина, тем сложнее сделать его компоненты (как со «стороны» процессора, так и периферии.) Поэтому в современных универсальных микропроцессорах ШАШ ~ 0.5 – 2.0 ШШД.

Примечание: ШАШ – ширина адресной шины, ШШД – ширина шины данных).

Copyright © Юрий А. Денисов. 2000-2002 г.

В настоящее время проект закрыт (в версии 1.00.3 alpha). Автор приносит извинения за прекрашение разработки.

Что такое разрядность шины памяти видеокарты и почему она не важна

Шина памяти видеокарты представляет собой специальный канал, который выполняет роль соединителя памяти и графического процессора. Данный показатель безусловно влияет на производительность карты, но не является исключительным критерием выбора. Как происходит непосредственно само влияние — рассмотрим в материале данной статьи.

Что представляет собой подсистема памяти видеокарт

Графический адаптер оснащен взаимосвязанными элементами на плате. Благодаря этому происходит синхронная работа устройства в целом. Разрядность шины — это совокупность каналов, соединяющих графический чип и модули памяти. Число таких дорожек влияет на скорость обмена данными. Производители могут встроить несколько чипов. Это выполняется относительно объема и скорости.

Группу таких чипов располагают на печатной плате около графического процессора и выполняют их соединение при помощи дорожек, количество которых определяет разрядность шины данных. Поэтому, чем больше по своим размерам шина, тем больше информации способна обработать видеокарта. Но это в теории.

Отметим, что графический адаптер при работе с высоким разрешением пропускает через себя высокое число данных. Нехваткой пропускной способности в основном обладают видеокарты среднего сегмента при запуске мощных игровых приложений в 4К разрешении. Поэтому на практике все это не является исключительной характеристикой первоочередного внимания.

По каким критериям выбирать видеокарту

Чтобы компенсировать низкий уровень частоты памяти, многие производители использовали шины на 256 бит. А в некоторых случаях и на 512 бит. Длительный период времени технология GDDR 2-го и 3-го поколения не могла обеспечить достижения высоких частот. В связи с этим большинство пользователей пришли к мнению, что большая разрядность шины определят лучшую модель видеокарты. Но такое утверждение применимо только в случаях сравнения графических ускорителей аналогичного поколения. Во всем остальном это лишь миф.

Критериями выбора видеокарты в основном являются следующие показатели:

  • объем видеопамяти (стандартно 4 Gb и выше);
  • уровень частоты графического процессора;
  • пропускная способность памяти;
  • уровень потребляемой мощности;
  • дополнительные функции (Ray Тracing, DLSS).

Как рассчитать пропускную способность

Разрядность шины можно определить только как одну переменную. Специалисты учитывают уровень частоты и тип видеопамяти. Путем их умножения получается величина, означающая пропускную способность памяти. Это и является главным параметром, определяющим производительность видеокарты в теории.

Формула для расчета выглядит следующим образом:

разрядность шины памяти Х частота памяти = пропускная способность

Значение получается в битах и для перевода его байты следует разделить полученное число на 8:

пропускная способность / 8

Приведем пример расчета:

Рассмотрим модель Radeon RX 6500 XT бюджетного класса. Разрядность шины — 64 бита. Оснащена новейшим чипами памяти GDDR6. Уровень частоты — 18000 МГц. Выполняем действие:

1800 Х 64 / 8 = 144 Гбайт/сек

Полученное значение позволяет увидеть, что данные передаются на высокой скорости. А ведь совсем недавно такая возможность была только на флагманских решениях. Видеопамять GDDR6 шестого поколения имеет отличие в виде низкого потребления электроэнергии и поддерживает частоту свыше 15000 МГц. Таким образом, производители могут создавать доступные в цене и достаточно экономичные видеокарты, обладающие относительной мощностью.

Также примером неправильного оценивания графической карты исключительно по шине служит бюджетная модель GeForce GT1030. Она обладает разрядностью шины данных равной 64 бита — величина, аналогичная Radeon RX 6500 XT. Пропускная способность в этом случае максимально может быть 48 Гбайт в секунду (вместо 144 Гбайт в секунду). Поэтому фактическая разница в рабочих задачах и играх является еще выше.

То же самое касается и видеокарт предыдущих поколений.

Технология НВМ и шина 4096 бит

High Bandwidth Memory (НВМ) — это память нового стандарта, являющаяся уникальной компоновкой стекового типа. Все составляющие чипа имеют взаимосвязь в виде единой цепи и расположены особым методом друг на друга. Данное архитектурное решение позволяет сокращать физическое расстояние между графическим процессором и чипами памяти. Соответственно, это имеет положительный эффект относительно пропускной способности. Но для специалистов стала проблемой слишком большая ширины шины, которая затрудняет разводку огромного числа контактов. Кремниевая подложка в этом случае стала способной к размещению широкой шины рядом с GPU.

Отличительной особенностью чипов НВМ являются небольшие габариты и низкое потребление энергии, а также высокая скорость передачи информации. Первой видеокартой массового назначения стала AMD Radeon R9 Fury X, оснащенная шиной памяти разрядность 4096 бита. Что является весьма внушительным показателем. Но, как мы говорили ранее, производительность видеоадаптера определяет не только этот параметр. Популярными представителями данных графических карт считаются RX Vega 64 ROG Strix 8GB, Nvidia Tesla P100 16GB, AMD Radeon VII 16GB. Процесс развития технологии происходит параллельно GDDR6, но последней пользователи все таки отдают большее предпочтение. Флагманские модели Radeon RX 6900 XT оснащены GDDR6 памятью.

В сегменте недорогих видеокарт данная технология не имеет особого распространения из-за большой стоимости и трудной реализации. Создание чипа нового поколения является весьма сложным процессом. Технология High Bandwidth Memory способна конкурировать с GDDR6, но окончательно вытеснить ее, конечно, не сможет. Память GDDR активно развивается и позволяет увеличивать частоты и получать высокий уровень пропускной способности даже на 64-128-битных шинах.

Подытожим

Устаревшие флагманские графические карты, имеющие широкую шину, обычно находятся в сегменте недорогих современных моделей. Сам по себе показатель разрядности шины роли не играет, будь он 64, 256 или 512 бит. Производители видеокарт выбирают разные пути. В некоторых версиях используются низкие частоты памяти с высокой разрядностью, а другие оснащаются высокочастотной памятью, совмещенной маленькой шиной 64-128 бит. Главным параметром здесь является итоговая производительность или, иначе говоря, пропускная способность. Рассчитать ее достаточно просто.

  • Все посты
  • HDD диски (51)
  • KVM-оборудование (2)
  • Powerline-адаптеры (2)
  • SSD диски (106)
  • USB-носители (4)
  • USB-хабы (3)
  • Батареи к ИБП (4)
  • Безопасность (3)
  • Беспроводные USB адаптеры (2)
  • Беспроводные роутеры (26)
  • Блоки питания (15)
  • Бумага (1)
  • Веб-камеры (2)
  • Вентиляторы корпусные (4)
  • Видеокарты (56)
  • Видеонаблюдение (7)
  • Внешние диски (4)
  • Гарнитуры (2)
  • Графические планшеты (2)
  • Дисковые полки (5)
  • Док-станции (1)
  • Звуковые карты (4)
  • ИБП (27)
  • Инструменты (1)
  • Кабели и патч-корды (10)
  • Картриджи (1)
  • Карты памяти (7)
  • Клавиатуры (8)
  • Колонки (3)
  • Коммутаторы (19)
  • Комплекты (клавиатура и мышь) (2)
  • Компьютерная периферия (2)
  • Компьютерные кресла (2)
  • Компьютеры (56)
  • Контроллеры и адаптеры (11)
  • Корпусы (15)
  • Ленточные носители (3)
  • Маршрутизаторы (2)
  • Материнские платы (28)
  • Модули памяти (23)
  • Мониторы (44)
  • Моноблоки (8)
  • МФУ (6)
  • Мыши (9)
  • Ноутбуки (44)
  • Общая справка (105)
  • Оптические приводы (2)
  • Охлаждение процессорное (17)
  • Панели (1)
  • Планшеты (3)
  • Плоттеры (1)
  • Портативные аккумуляторы (1)
  • Принтеры (7)
  • Программное обеспечение (85)
  • Процессоры (74)
  • Рабочие станции (8)
  • Распределение питания (2)
  • Ретрансляторы Wi-Fi (3)
  • Серверы (91)
  • Сетевые карты (7)
  • Сетевые фильтры (2)
  • Сканеры (2)
  • СХД (15)
  • Телевизоры (1)
  • Телекоммуникационные шкафы (9)
  • Телефония (4)
  • Тонкие клиенты (2)
  • Трансиверы (5)
  • Умный дом (2)

Также вас может заинтересовать

Учебно-методический комплекс

Устройства, подключаемые к шине, разделяются на два основных типа: busmasters и busslaves. Busmasters — это устройства, способные управлять работой шины, то есть инициировать запись/чтение и т. п. Busslaves — соответственно, устройства, которые могут только отвечать на запросы.

Важнейшей характеристикой шины является ее разрядность, которая определяет количество данных, передаваемых по шине одновременно (за один такт). Понятно, что чем больше разрядность шины, тем больше ее производительность, хотя, правда, это и не всегда так, так как количество передаваемой в секунду информации зависит еще и от собственно ее частоты. По назначению шины можно разделить на три категории:

По этой шине происходит обмен данными между процессором, картами расширения и памятью. Особую роль здесь играет так называемый DMA-контроллер (DirectMemoyAccess), через который происходит управление транспортировкой данных, минуя процессор. Такой способ хорош тем, что освобождает ресурсы CPU для других нужд. Разрядность шины данных может составлять 8 бит, 16 бит, 32 бит и так далее.

Данные, которые в большом количестве кочуют по шине через материнскую плату, должны, в конце концов, сделать где-нибудь помежкточную остановку. Местом для этой остановки являются отдельные ячейки памяти. Каждая ячейка должна иметь свой адрес. Следовательно, объем памяти, который может адресовать процессор, зависит от разрядности адресной шины. Его можно вычислить по формуле:

Объем адресуемой памяти = 2n, где n — число линий в адресной шине.

Процессор 8088, например, имел в своем распоряжении 20 адресных линий и, таким образом, мог адресовать всего 1 Mb памяти (220=1048576). В компьютерах на базе процессора 80286 адресная шина была уже 24-разрядной, а процессоры 80486 имеют уже 32-разрядную шину, которая позволяет адресовать 4 им гигабайта памяти.

Конечно же, незачем просто транспортировать данные по шине и располагать их в памяти, если непонятно, куда их нужно переслать и какое устройство в них нуждается. Разрешение этой проблемы на себя шина контроллера, называемая также системной шиной, или шиной управления.

В качестве конечных пунктов системной шины можно рассматривать слоты расширения, интегрированные на материнскую плату контроллеры и прочее. Все эти устройства соединены между собой шиной управления. Логично предположить, что от ее производительности во многом зависит производительность всей системы, и чем больше тактовая частота и разрядность этой шины, тем лучше. Внешний вид слотов расширения, которые установлены на материнской плате, зависит именно от типа шины управления. Понятно, что, например, разъемы 32-разрядной системной шины будут отличаться от разъемов 16-разрядной шины.

Шина ISA была первой стандартизированной системной шиной (ISA означает IndustryStandartArchitecture) и долгие годы являлась стандартом в области РС. И даже сегодня разъемы этой шины можно встретить на некоторых системных платах.

Родоначальником в семействе шин ISA была появившаяся в 1981 году 8-разрядная шина (8 bit ISA Bus), которую можно встретить в компьютерах ХТ-генерации. 8-разрядная шина имеет 62 линии, контакты которых можно найти на ее слотах. Они включают 8 линий данных, 20 линий адреса, 6 линий запроса прерываний. Шина функционирует на частоте 4.77 MHz. 8-разрядная шина ISA — самая медленная из всех системных шин (пропускная способность составляет всего 1.2 Mb в секунду), поэтому она уже давным-давно устарела и поэтому сегодня нигде не используется, ну разве что о-о-очень редко (например, некоторые карточки FM-тюнера могут 8-разрядный ISA-интерфейс, так как там шина используется только для управления, а не для передачи собственно данных, и скорость ее работы является некритичной).

Дальнейшим развитием ISA стала 16-разрядная шина, также иногда называемая AT-Bus, которая впервые начала использоваться в 1984 году. Если вы посмотрите на ее слоты (извините, пожалуйста, за плохое качество рисунка), то увидите, что они состоят из двух частей, из которых одна (большая) полностью копирует 8-разрядный слот. Дополнительная же часть содержит 36 контактов (дополнительные 8 линий данных, 4 линии адреса и 5 линий IRQ плюс контакт для нового сигнала SBHE). На этом основании короткие 8-разрядные платы можно устанавливать в разъемы новой шины (сделать это наоборот, конечно же, невозможно).

Передача байта данных по шине ISA происходит следующим образом: сначала на адресной шине выставляется адрес ячейки RAM или порта устройства ввода/вывода, куда следует передать байт, затем на линии данных выставляется байт данных. Производится задержка тактами ожидания и подается сигнал на передачу байта (строб записи), причем неизвестно, успели записаться данные или нет. Поэтому тактова частота шины выбрана 8.33 MHz, чтобы даже самые медленные устройства гарантированно могли произвести по шине обмен даными (командами). Пропускная способность при этом составила 5.3 Mb/s.

В 1987 году компания IBM прекратила выпуск серии РС/АТ и начала производство линии PS/2. Одним из главных отличий нового поколения персональных компьютеров была новая системная шина MCA (MicroChannelArchitecture). Эта шина не обладала обратной совместимостью с ISA, но зато содержала ряд передовых для своего времени решений:

· 8/16/32-разрядная передача данных

· Пропускная способность составила 20 Mb/s при частоте 10 MHz и максимальной пропускной способности 160 Mb/s (!), то есть больше, чем у 32-разрядной PCI

· Поддержка нескольких busmaster. Любое устройство, подключенное к шине, может получить право на ее исключительное использование для передачи или приема данных с другого соединенного с ней устройства. Такое устройство, по сути, представляет собой специализированный процессор, который может осуществлять обмен данными по шине независимо от основного процессора. Работу устройств арбитр шины (CACP — CentralArbitrationControlPoint). При распределении функций управления шиной арбитр исходит из уровня приоритета, которым обладает то или иное устройство или операция. Всего таких уровней четыре (в порядке убывания):

· Регенерация системной памяти

· Прямой доступ к памяти (DMA)

Все описанные ранее шины (за исключением MCA) имеют общий недостаток — сравнительно низкую пропускную способность. Это связано с тем, что шины разрабатывались в расчете на медленные процессоры. В дальнейшем быстродействие последнего возрастало, а характеристики шин улучшались в основном экстенсивно, за счет добавления новых линий. Препятствием для повышения частоты шины являлось огромное количество выпущенных плат, которые не могли работать на больших скоростях обмена (МСА это касается в меньшей степени, но в силу вышеизложенных причин эта архитектура не играла заметной роли на рынке). В то же время в начале 90-х годов в мире персональных компьютеров произошли изменения, потребовавшие резкого увеличения скорости обмена с устройствами:

· Создание нового поколения процессоров типа Intel 80486, работающих на внешних частотах до 66 MHz

· Увеличение емкости жестких дисков и создание более быстрых контроллеров

· Разработка и активное продвижение на рынок графических интерфейсов пользователя (типа Windows) привели к созданию новых графических адаптеров, поддерживающих более высокое разрешение и большее количество цветов (VGA и SVGA), что привело к нехватке пропускной способности имеющихся шин (MCA, как уже говорилось, не в счет)

Выход из создавшегося положения следующий: осуществлять часть операций обмена данными, требующих высоких скоростей, не через шину ввода/вывода, а через шину процессора, примерно так же, как подключается внешний кэш.

Едва карта VLB успела закрепиться на рынке, как в июне 1992 года фирма Intel изготовила новую шину — шину PCI (PeripheralComponentInterconnect). Именно этот «периферийный соединительный компонент» находится в большинстве современных компьютеров, де-факто стал стандартом для шинной индустрии нашего времени.

Разработчики шины поставили своей целью создать принципиально новый интерфейс, который бы не являлся усовершенствованиями других технологий (как, например EISA), не зависел от платформы (то есть мог работать с будущими поколениями процессоров), имел высокую производительность и был дешев в производстве. Благодаря отказу от использования шины процессора шина PCI оказалась не только процессоронезависимой, но и могла работать самостоятельно, не обращаясь к последней с запросами. Например, процессор может работать с памятью, в то время как по шине PCI передаются данные. Основополагающим принципом шины PCI является применение так называемых мостов (Bridges), которые осуществляют связь шины с другими компонентами системы (например, PCI to ISA Bridge). Другой особенностью является реализация так называемых принципов BusMaster и BusSlave. Например, карта PCI-Masterможет как считывать данные из оперативной памяти, так и записывать их туда без обращения к процессору. Карта PCI-Slave (например, графический контроллер) может только считывать данные.

Особенности шины PCI:

· Синхронный 32-х или 64-х разряд ный обмен данными (правда, насколько мне известно, 64-разрядная шина в настоящее время используется только в Alpha-системах и серверах на базе процессоров IntelXeon, но, в принципе, за ней будущее). При этом для уменьшения числа контактов (и стоимости) используется мультиплексирование, то есть адрес и данные передаются по одним и тем же линиям

· Шина поддерживает метод передачи данных, называемый linearburst (метод линейных пакетов). Этот метод предполагает, что пакет информации считывается (или записывается) одним куском, то есть адрес автоматически увеличивается для следующего байта. Естественным образом при этом увеличивается скорость передачи собственно данных за счет уменьшения числа передаваемых адресов

· В шине PCI используется совершенно отличный от ISA способ передачи данных. Этот способ, называемый способом рукопожатия (handshake), заключается в том, что в системе определяется два устройства: передающее (Iniciator) и приемное (Target). Когда передающее устройство готово к передаче, оно выставляет данные на линии данных и сопровождает их соответствующим сигналом (IniciatorReady), при этом приемное устройство записывает их (данные) в свои регистры и подает сигнал TargetReady, подтверждая запись данных и готовность к приему следующих. Установка всех сигналов производится строго в соответствии с тактовыми импульсами шины

· Относительная независимость отдельных компонентов системы. В соответствии с концепцией PCI передачей пакета данных управляет не CPU, а мост, включенный между ним и шиной PCI (HostBridgeCashe/DRAM Controller). Процессор может продолжать работу и тогда, когда происходит обмен данными с RAM. То же происходит и при обмене данными между двумя другими компонентами системы

· Низкая нагрузка на процессор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *