Сколько значащих нулей в двоичной записи числа
Перейти к содержимому

Сколько значащих нулей в двоичной записи числа

  • автор:

Понятная информатика,

Обозначим через N основание системы счисления.

Тогда наибольшая цифра в системе счисления с основанием N равна N-1.

  • Любое основание N в своей системе счисления выглядит как 10, т.е.

(например: 210=102, 310=103, 810=108, 1610=1016 и так далее).

  • Степень любого основания N в своей системе счисления выглядит как единица и количество нулей, равных степени, т.е.

(например: 4=22=1002, 8=23 =10002, 16=24=100002 и так далее).

  • Число, стоящее перед k-той степенью основания, в своей системе счисления выглядит как последовательность из k самых больших цифр этой системы счисления, т.е.

Тогда 2 k – 1 = 1…12

(например: 3=22-1=112, 7=23 -1=1112, 15=24-1=11112 и так далее).

  • Число N k – N m = N k · (N k-m – 1) записывается в системе счисления с основанием N как k-m старших цифр этой системы счисления, за которыми следует k нулей:

m – k k

m – k k

(например: 103 — 102 = 900, 103 — 101 = 990, 105 — 103 = 99000, 25 – 22 = 111002, 35 – 32 = 222003 и так далее).

Примеры и способы решения задач.

Задача 1.

Сколько единиц в двоичной записи числа 8 1025 + 2 1024 – 3 ?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней, с учетом того, что 3 = 4 — 1:

8 1025 + 2 1024 – 3 = 2 3075 + 2 1024 – 2 2 + 2 0

Количество единиц в разности 2 1024 – 2 2 будет 1024-2 = 1022 единицы + 1 единица (число 2 4032 ) + 1 единица от числа 20, то всего получаем 1022+1+1 = 1024 единицы.

Задача 2.

Сколько единиц в двоичной записи числа 8 2014 – 2 614 + 4 5 ?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней, с учетом того, что 45 = 32 + 8 + 4 + 1:

8 2014 – 2 614 + 4 5 = 2 6042 — 2 614 + 2 5 + 2 3 + 2 2 + 2 0

Количество единиц в разности 2 6042 — 2 614 будет 6042 – 614 = 5428 единиц + 4 единицы от чисел 2 5 , 2 3 , 2 2 и 2 0 , то всего получаем 5428+4 = 5432 единицы.

Задача 3.

Значение арифметического выражения 4 10 + 2 90 — 16 записали в системе счисления с основанием 2. Сколько цифр «1» содержится в этой записи?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней:

2 20 + 2 90 – 2 4 = 2 90 + 2 20 – 2 4

Тогда после перевода в двоичную систему счисления в числе 2 90 будет 1 единица, в разности 2 20 – 2 4 будет

20 — 4 = 16 единиц и 4 нуля. Следовательно, в полученном результате получаем всего 16 + 1 = 17 единиц.

Задача 4.

Значение арифметического выражения 6 410 + 2 60 — 16 записали в системе счисления с основанием 8. Сколько цифр «7» содержится в этой записи?

Приведем все числа в заданном примере к одному виду с основанием 8 и упорядочим их в порядке убывания степеней, учитывая, что 16 = 8 + 8:

4 12 + 2 60 — 16 = 8 20 + 8 30 – 16 = 8 30 + 8 20 – 8 1 – 8 1

Ищем в разности крайнюю левую степень восьмерки и крайнюю правую 8 20 – 8 1 , при этом среднюю 8 1 на время «теряем».

Определяем количество семерок в разности 8 20 – 8 1 , получаем 20 — 1 = 19 семерок.

Так как «внутри» этой разности есть еще 8 1 , то просто вычитаем одну семерку: 19 – 1 = 18.

Задача 5.

Сколько единиц в двоичной записи числа 4 2018 + 8 305 – 2 130 – 120 ?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней, с учетом того, что 45 = 32 + 8 + 4 + 1:

4 2018 + 8 305 – 2 130 – 120 = 2 4036 + 2 915 – 2 130 — 2 7 + 2 3

Ищем в разности (2915 – 2130 — 27) крайнюю левую степень двойки и крайнюю правую 2 915– 2 7 , при этом среднюю 2 130 на время «теряем».

Определяем количество семерок в разности 2 915 – 2 7 , получаем 915-7 = 908 единиц.

Так как «внутри» этой разности есть еще 2 130 , то просто вычитаем одну единицу: 908 – 1 = 907.

Прибавляем 2 единицы от чисел 2 4036 и 2 3 , то всего получаем 907 + 2 = 909 единиц.

Задача 6.

Значение арифметического выражения 9 9 – 3 9 + 9 19 – 19 записали в системе счисления с основанием 3. Сколько цифр «2» содержится в этой записи?

Приведем все числа в заданном примере к одному виду с основанием 3 и упорядочим их в порядке убывания степеней, учитывая, что 19 = 27 – 8 + 1+1:

9 9 – 3 9 + 9 19 – 27 + 9 — 1 -1 = 3 18 + 3 38 – 3 3 + 3 2 – 3 0 = 3 38 + 3 18 – 3 3 + 3 2 – 3 0 – 3 0

Разбиваем нашу запись на две разности 3 18 – 3 3 и 3 2 – 3 0 и вычисляем их отдельно.

Количество двоек в разности 3 18 – 3 3 будет 18-3 = 15, в разности 3 2 – 3 0 будет равно 2, всего 15 + 2 = 17 двоек. Вычитаем из них еще одну единицу, так как 3 0 = 12. При этом последняя цифра меняется как 2-1=1, в результате получаем 17-1 = 16 двоек.

Задача 7.

Сколько значащих нулей в двоичной записи числа 4 512 + 8 512 – 2 128 – 250 ?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней, учитывая, что 250 = 256 – 4 – 2 = 2 8 – 2 2 — 2 1 :

4 512 + 8 512 – 2 128 – 256+ 4 + 2 = 2 1024 + 2 1536 – 2 128 – 2 8 + 2 2 + 2 1 = = 2 1536 + 2 1024 – 2 128 – 2 8 + 2 2 + 2 1

Ищем в разности 2 1024 – 2 128 – 2 8 крайнюю левую степень двойки и крайнюю правую 2 1024 –2 8 , при этом среднюю 2 128 на время «теряем».

В разности 2 1024 –2 8 будет 1024 — 8 = 1016 единиц и 8 нулей.

Так как «внутри» этой разности есть еще 2 128 , то просто заменяем одну единицу (на 128 месте) на ноль и получаем 1015 единиц и 9 нулей.

С этого момента можно решать задачу двумя способами:

1) Между 2 1536 и 2 1024 (до конца числа) есть еще 1536-1024=512 нулей, два из которых заняты единицами (22+21), тогда получаем еще 512-2 = 510 нулей.

Итого в результате вычислений получаем 510+9 = 519 нулей.

Можно показать это вычисление на схеме, где вычисляемая выше разность выделена черным цветом:

Всего 1 ед. + 1534 нуля + 2 ед.в конце _

1 ед.+1022 нуля + 2 ед.в конце

2 1536 _ + _ 2 1024 – 2 128 – 2 8 + 2 2 + 2 1

1 ед.+510 нулей + 1015 ед. + 9 нулей + 2 ед.

2) Посчитать общее число единиц после выполнения вычислений и вычесть их общей длины исходного двоичного числа.

2 1536 + 2 1024 – 2 128 – 2 8 + 2 2 + 2 1

1 ед. + 1015 ед. + 2 ед . = 1018 ед.

Так как 2 1536 = 10…0 2 равна 1537 знаков, то в нем будет 1537-1018 = 519 нулей.

Задача 8.

Сколько единиц в двоичной записи числа 4 2016 + 2 2018 – 8 600 + 6 ?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней, учитывая, что 6 = 4 + 2:

4 2016 + 2 2018 – 8 600 + 6 = 2 4032 + 2 2018 – 2 1800 + 2 2 + 2 1

После перевода числа 2 4032 в двоичную систему оно будет состоять из 1 единицы и 4032 нулей.

Количество единиц в разности 2 2018 – 2 1800 будет 2018-1800 = 218 единиц + 1 единица (число 24032) + 2 единицы от чисел 2 2 и 2 1 , то всего получаем 218+3 = 221 единицу.

Задача 9.

Сколько единиц в двоичной записи числа 4 2016 – 2 2018 + 8 800 – 80?

Приведем все числа в заданном примере к одному виду с основанием 2 и упорядочим их в порядке убывания степеней, учитывая, что 80 = 64 + 16:

4 2016 – 2 2018 + 8 800 – 80= 2 4032 — 2 2018 + 2 2400 – 2 6 — 2 4 = 2 4032 + 2 2400 — 2 2018 – 2 6 — 2 4

Далее рассмотрим два способа решения задачи.

1). После перевода числа 2 4032 в двоичную систему оно будет состоять из 1 единицы и 4032 нулей.

Из записи 2 2400 — 2 2018 – 2 6 — 2 4 возьмем разность первого и последнего чисел 2 2400 — 2 4 и получаем 2396 единиц. Вычитаем из них 2 единицы, которые дают числа 2 6 и 2 4 , остается 2394 единицы.

Тогда всего получаем 1 + 2394 = 2395 единиц.

2). Будем решать данную задачу путем последовательных вычитаний.

После перевода числа 2 4032 в двоичную систему оно будет состоять из 1 единицы и 4032 нулей.

Количество единиц в разности 2 4000 – 2 2018 будет 4000-2018 = 382 и 2018 нулей.

Оставляем 381 единицу, используя далее 1 единицу и 2018 нулей, что равно числу 2 2018 .

Далее, в разности 22018 — 26 будет 2012 единиц и 6 нулей.

Оставляем 2011 единиц, остается число 2 6 . Тогда разность 2 6 – 2 4 получаем 2 единицы.

Складываем все единицы и получаем 1 + 381 + 2011 + 2 = 2395 единиц.

Сколько значущих нулей в двоичной записи десятичного числа 128? Проверьте

Фото вот могу перефоткать
Как откуда считать?

Лучший ответ

Чтобы из десятичной системы перевести число в двоичную, нужно число, а затем и итоги деления делить на 2, определяя при этом остатки. Затем записать все остатки с конца. Это и будет число в двоичной системе.
128:2=64 остаток 0:
64:2=32 остаток 0;
32:2=16 остаток 0;
16:2=8 остаток 0;
8:2=4 остаток 0;
4:2=2 остаток 0;
2:2=1 остаток 0:
1:2=0 остаток 1.
128(10)=10000000(2). 7 значащих нулей.

ДобрягаМудрец (14170) 9 лет назад

Спасибо огромное) не стоило так все расписывать) я ж решил) просто не знаю как и откуда считать цифры)

Булатова Римма Искусственный Интеллект (126634) Ты не разделил последний остаток 1:2=0 остаток 1.

Остальные ответы

сколько значащих нулей в двоичной записи шестнадцатеричного числа 1AB0 16

Всего 7 нулей.

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Сколько значащих нулей в двоичной записи числа

Задания ЕГЭ по номерам:

  • 1 Системы счисления
  • 2 Таблицы истинности
  • 3 Поиск кратчайшего пути
  • 4 Базы данных
    Файловая система
  • 5 Кодирование информации
  • 6 Анализ алгоритмов
  • 7 Электронные таблицы
  • 8 Программирование: циклы
  • 9 Объем информации
    Передача информации
  • 10 Комбинаторика
  • 11 Рекурсивные алгоритмы
  • 12 Сети, адресация
  • 13 Количество информации
  • 14 Алгоритмы с исполнителем
  • 15 Поиск путей в графе
  • 16 Системы счисления
  • 17 Запросы для поисковых систем
  • 18 Логические выражения
    Отрезки, множества, функции
  • 19 Программирование: массивы
  • 20 Программирование: циклы
  • 21 Программирование: подпрограммы
  • 22 Перебор вариантов
  • 23 Системы логических уравнений
  • 24 Программирование: поиск ошибки в программе
  • 25 Программирование: обработка массивов
  • 26 Теория игр
  • 27 Программирование: разработка программы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *