Сколько решений имеет дифференциальное уравнение
Перейти к содержимому

Сколько решений имеет дифференциальное уравнение

  • автор:

Сколько решений имеет ДУ

Author24 — интернет-сервис помощи студентам

Здравствуйте. Помогите пожалуйста с вопросом.
Сколько решений имеет ДУ n-го порядка и почему?
Я так понимаю имеет n решений, но почему не знаю.

Лучшие ответы ( 1 )
94731 / 64177 / 26122
Регистрация: 12.04.2006
Сообщений: 116,782
Ответы с готовыми решениями:

Сколько решений, удовлетворяющих начальному условию имеет ДУ
Сколько решений, удовлетворяющих начальному условию y(1)=2013, имеет дифференциальное уравнение.

Задача Коши не имеет решений
Добрый день! Подскажите, пожалуйста. Недавно начал изучать диф.уравнения. Начал решать одно из.

Сколько решений имеет ребус
Написал программу, которая решает следующий ребус: ABC+DEF=XYZ Суть ребуса в том, что нужно.

При каких действительных значениях a уравнение не имеет решений
Добрый день! Задание: При каких действительных значениях a уравнение не имеет решений.

Эксперт по математике/физике

10242 / 6780 / 3691
Регистрация: 14.01.2014
Сообщений: 15,655

Лучший ответ

Сообщение было отмечено odnivonpocbl как решение

Решение

ДУ любого порядка имеет в общем случае бесконечное число общих решений, так как записывается через константы, которые могут принимать бесконечное число значений. Частное решение ДУ любого порядка, если заданы все необходимые начальные условия, имеет обычно (при выполнении ряда условий) одно решение, но в отдельных случаях могут быть дополнительные особые решения.

87844 / 49110 / 22898
Регистрация: 17.06.2006
Сообщений: 92,604
Помогаю со студенческими работами здесь

Сколько существует решений в целых числах?
Сколько существует натуральных n, меньших 1031, таких что уравнение a^2+b^2=3^n имеет решение в.

Сколько нужно частных решений линейного ДУ 2-го порядка для составления общего решения?
Почему для составления общего решения линейного дифференциального уравнения второго порядка нужно.

Дано равенство, в котором цифры заменены на буквы: rqtr + wrt = rwuu Найдите сколько у него решений
Задача 1 Дано равенство, в котором цифры заменены на буквы: rqtr + wrt = rwuu Найдите сколько у.

Сколько решений имеет уравнение x + y^2 + z^3 + u^4 = 21?
Сколько решений имеет уравнение x + y^2 + z^3 + u^4 = 21 в целых неотрицательных числах.

Или воспользуйтесь поиском по форуму:

Дифференциальные уравнения первого порядка. Примеры решений.
Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО. Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл, тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить производную от функции, заданной неявно.

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными, которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения. Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным.

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах, уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материал – частное интегрирование.

Если у вас в запасе всего день-два, то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним «обычные» уравнения. Они содержат переменные и числа. Простейший пример: . Что значит решить подобное уравнение? Это значит, найти множество всех чисел, которые удовлетворяют данному уравнению. Легко видеть, что детское уравнение имеет единственный корень . Выполним проверку, подставив четвёрку в уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит:
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т. д.

Что значит решить дифференциальное уравнение? Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению (впрочем, порой, достаточно одной). То есть корнями дифференциального уравнения являются функции. Для ДУ 1-го порядка такое множество функций зачастую имеет вид , который называют общим решением дифференциального уравнения («цэ» принимает различные действительные значения).

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т. п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т. к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение.

Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) целесообразно записать тоже под логарифмом. И записать НЕПРЕМЕННО, если получились одни логарифмы (как в рассматриваемом примере).

То есть ВМЕСТО записи обычно пишут (и это корректно, так как с таким же успехом принимает все действительные значения, что и ).

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов . В данном случае:

Теперь логарифмы и модули можно убрать:

Функция представлена в явном виде. Это и есть общее решение.

Ответ: общее решение: .

Ответы многих дифференциальных уравнений довольно легко проверить. В нашем случае это делается совсем просто, берём найденное решение и дифференцируем его:

После чего подставляем и производную в исходное уравнение :

– получено верное равенство, значит, множество функций удовлетворяет уравнению , что и требовалось проверить.

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Ясно, что любая из функций , , и т. д. удовлетворяет дифференциальному уравнению .

Иногда общее решение называют семейством функций. В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях:

1) В этом примере нам удалось разделить переменные. Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, в однородных уравнениях первого порядка, сначала нужно провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка, нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют. …тьфу, lurkmore.to давеча начитался, чуть не добавил «с того света».

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

4) . Пожалуй, пока достаточно. В первом же примере нам встретился ещё один важный момент, но дабы не накрыть «чайников» лавиной новой информации, оставлю его до следующего урока.

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения:

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Решение: по условию требуется найти частное решение ДУ, удовлетворяющее заданному начальному условию. Такая постановка вопроса называется задачей Коши.

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – константа, то – тоже некоторая константа, переообозначим её через :

После чего раскрываем модуль:
и снова переобозначаем константу , подразумевая, что «цэ» может принимать как положительные, так и отрицательные значения:

Запомните «снос» константы – это второй технический приём, который часто используют в ходе решения дифференциальных уравнений. На чистовике обычно сразу переходят от к , но всегда будьте готовы объяснить этот переход. Точно так же как вы – попросили меня объяснить, и я объяснил 🙂

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:

Стандартная версия оформления:

Теперь в общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Ответ: частное решение:

Выполним проверку. Проверка частного решения включает в себя два этапа:

Сначала нужно проверить, а действительно ли найденная функция удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученную функцию и находим производную:

Подставляем и в исходное уравнение :

– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Решить дифференциальное уравнение

Решение: переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы, прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти методом подведения функции под знак дифференциала, с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:

В результате у нас получились одни логарифмы, и, согласно моей первой технической рекомендации, константу тоже определяем под логарифм.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. С помощью известных свойств максимально «упаковываем» логарифмы. Распишу очень подробно:

Упаковка завершена, чтобы быть варварски ободранной:
, и сразу-сразу приводим общий интеграл к виду , коль скоро это возможно:

Так делать, вообще говоря, не обязательно, но всегда же выгодно порадовать профессора 😉

В принципе, этот шедевр можно записать в ответ, но здесь ещё уместно возвести обе части в квадрат и переобозначить константу:

Ответ: общий интеграл:

! Примечание: общий интеграл часто можно записать не единственным способом. Таким образом, если ваш результат не совпал с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Можно ли выразить «игрек»? Можно. Давайте выразим общее решение:

Само собой, полученный результат годится для ответа, но обратите внимание, что общий интеграл смотрится компактнее, да и решение получилось короче.

Третий технический совет: если для получения общего решения нужно выполнить значительное количество действий, то в большинстве случаев лучше воздержаться от этих действий и оставить ответ в виде общего интеграла. Это же касается и «плохих» действий, когда требуется выразить обратную функцию, возвести в степень, извлечь корень и т. п. Дело в том, что общее решение будет смотреться вычурно и громоздко – с большими корнями, знаками и прочим математическим трэшем.

Как выполнить проверку? Проверку можно выполнить двумя способами. Способ первый: берём общее решение , находим производную и подставляем их в исходное уравнение . Попробуйте самостоятельно!

Второй способ состоит в дифференцировании общего интеграла. Это довольно легко, главное, уметь находить производную от функции, заданной неявно:

делим каждое слагаемое на :

Получено в точности исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения.

Напоминаю, что алгоритм состоит из двух этапов:
1) нахождение общего решения;
2) нахождение требуемого частного решения.

Проверка тоже проводится в два шага (см. образец в Примере № 2), нужно:
1) убедиться, что найденная функцию удовлетворяет начальному условию;
2) проверить, что они вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: сначала найдем общее решение. Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала:

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы на обе части. Поскольку они положительны, то знаки модуля излишни:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию .
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденная функция дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим функцию и полученный дифференциал в исходное уравнение :

Получено верное равенство, таким образом, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в полученное ДУ подставим с найденной производной . В результате упрощений тоже должно получиться верное равенство.

Найти общий интеграл уравнения , ответ представить в виде .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, «чайнику»), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла, то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть хоть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно обращаться достаточно вольно, и некоторые преобразования не всегда понятны новичку. Рассмотрим ещё один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и поскольку у нас одни логарфимы, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что с индексами часто не заморачиваются и используют одну и ту же букву . В результате запись решения принимает следующий вид:

Что за дела?! Тут же ошибки! Строго говоря – да. Однако с содержательной точки зрения, ошибок нет, ведь в результате преобразования варьируемой константы получается равноценная варьируемая константа.

Или другой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому у каждого слагаемого целесообразно сменить знак: . Формально здесь опять ошибка – справа следовало бы записать . Но неформально подразумевается, что «минус цэ» – это всё равно константа, которая с тем же успехом принимает то же множество значений, и поэтому ставить «минус» не имеет смысла.

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании. Чего и вам советую делать.

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем. В левой части подводим функцию под знак дифференциала, а в правой используем стандартный искусственный приём:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

И, разумеется, здесь НЕ НАДО выражать «игрек» в явном виде, ибо получится трэш (вспоминаем третий технический совет).

Проверка: дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственная подсказка – здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, а частный интеграл. Полное решение и ответ в конце урока.

Как уже отмечалось, в диффурах с разделяющимися переменными нередко вырисовываются не самые простые интегралы. И вот еще парочка таких примеров для самостоятельного решения. Рекомендую всем прорешать Примеры № 9-10, независимо от уровня подготовки, это позволит актуализировать навыки нахождения интегралов или восполнить пробелы в знаниях.

Решить дифференциальное уравнение

Решить дифференциальное уравнение

Помните, что общий интеграл можно записать не единственным способом, и внешний вид ваших ответов может отличаться от внешнего вида моих ответов. Краткий ход решения и ответы в конце урока.

Решения и ответы:

Пример 4. Решение: найдем общее решение. Разделяем переменные:

Интегрируем:

Общий интеграл получен, пытаемся его упростить. Упаковываем логарифмы и избавляемся от них:

Выражаем функции в явном виде, используя .
Общее решение:

Найдем частное решение, удовлетворяющее начальному условию .
Способ первый, вместо «икса» подставляем 1, вместо «игрека» – «е»:
.
Способ второй:

Подставляем найденное значение константы в общее решение.
Ответ: частное решение:

Проверка: проверяем, действительно ли выполняется начальное условие:
, да, начальное условие выполнено.
Проверяем, удовлетворяет ли вообще функция дифференциальному уравнению. Сначала находим производную:

Подставим функцию и найденную производную в исходное уравнение :

Получено верное равенство, значит, решение найдено правильно.

Пример 6. Решение: данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Примечание: тут можно получить и общее решение:

Но, согласно моему третьему техническому совету, делать это нежелательно, поскольку такой ответ смотрится довольно плохо.

Пример 8. Решение: данное ДУ допускает разделение переменных. Разделяем переменные:

Интегрируем:

Общий интеграл:
Найдем частное решение (частный интеграл), соответствующий заданному начальному условию . Подставляем в общее решение и :

Ответ: частный интеграл:
В принципе, ответ можно попричесывать и получить что-нибудь более компактное.

Пример 9. Решение: данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

Таким образом:

(здесь дробь раскладывается методом неопределенных коэффициентов, но она настолько простая, что подбор коэффициентов можно выполнить и устно)

Обратная замена:

Ответ: общий интеграл:

Пример 10. Решение: данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Примечание: интеграл можно было также найти методом выделения полного квадрата.

Ответ: общее решение:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Типы дифференциальных уравнений

Решение: (2) разделим на [math]N_(y)M_(x) \neq 0[/math] и оно сведется к (1). в случае = 0 могут существовать особые решения.

Однородные уравнения

Определение:
уравнение вида [math]M(x, y)dx + N(x, y)dy = 0 \:\: (3)[/math] , где M и N — однородные функции одного измерения, называется однородным уравнением
Определение:
[math]f(x, y) \ — [/math] однородная функция измерения n [math]\Leftrightarrow \: f(\lambda x, \lambda y) = \lambda^f(x, y)[/math]

Решение: произвести замену [math]t = \dfrac[/math]

Определение:
[math]\dfrac=f\left(\dfrac\right) \ -[/math] один из видов однородного уравнения.

Уравнения приводящиеся к однородным

Определение:
уравнение вида [math]\dfrac= f\left(\dfracx + b_y + c_>x + b_y + c_>\right) (4)[/math] называется уравнением приводящимся к однородному

Решением уравнения [math](4)[/math] является:

1) [math]\begin a_ & b_\\ a_ & b_ \end \neq 0 \Rightarrow \left\ x = u + \alpha \\ y = v + \beta \end\right. [/math]

[math] (\alpha, \beta) : \left\ a_x + b_y + c_ = 0\\ a_x + b_y + c_ = 0 \end\right.[/math]

Тогда получаем однородное уравнение.

2) [math]\begin a_ & b_\\ a_ & b_ \end = 0 \Rightarrow [/math] пусть [math]a_ x + b_ y + c_ = t [/math]

Тогда получаем уравнение с разделяющимися переменными.

Докажем 1), второй доказывается аналогично. Подставим замену:
[math]a_x + b_y + c_ = a_(u + \alpha) + b_(v + \beta) + c_ = a_\alpha + b_\beta + c_ + a_u + b_v =[/math] [math]a_u + b_v = 0 [/math]

Линейное уравнение первого порядка

Определение:
уравнение вида [math]\frac = p(x) y + q(x)(5)[/math] называется линейным уравнением [math]I[/math] порядка
Определение:
Если [math]q(x) = 0[/math] , то уравнение [math](5) [/math] называется однородным линейным уравнением [math]I[/math] порядка

Способ решения методом Бернулли

Пусть [math] y(x) = u(x) v(x)[/math] , тогда:

[math] u'(x) v(x) + u(x) v'(x) = p(x) u(x) v(x) + q(x) [/math]

[math] u'(x) v(x) + u(x) [ v'(x) — p(x) v(x)] = q(x) [/math] , назовем это уравнение [math](5a)[/math]

Пусть [math] v(x) [/math] таково, что:

[math] v'(x) — p(x) v(x) = 0 [/math]

[math]\frac — p(x) v(x) = 0 [/math] . Домножим на [math] \frac [/math] [math]\frac — p(x) dx = 0 [/math] . Отсюда получаем:

[math]ln(v) = \int p(x)dx + C[/math]

Пусть [math] C = 1[/math] . Тогда из [math](5a)[/math] получаем:

[math] u(x) = \int q(x) e^ <\int -p(x)dx>dx + C_ [/math] . Тогда

Способ решения методом Лагранжа

[math] \frac = p(x) y [/math]

Рассмотрим общее однородное(O.O) и общее неоднородное решение(O.H): [math] y_ = C e^<\int p(x)dx>[/math] (из док-ва Бернулли)

[math] C(x) = \int q(x) C(x) e^ <\int p(x)dx>dx + C_ [/math]

Уравнение в полных дифференциалах

Определение:
Уравнение вида: [math]M(x, y)dx + N(x, y)dy = 0 \:\: (6)[/math] называется уравнением в полных дифференциалах, если [math](6) = du(x, y)[/math]

т.к. [math]du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -[/math] общий интеграл.

Пусть [math]M(x, y), N(x, y) \in C(G)[/math] , где G — односвязная область, и [math]\frac<\partial M(x,y)><\partial y>, \: \frac<\partial N(x, y)> <\partial x>\in C(G)[/math] ;
Тогда [math]Mdx + Ndy = du \: \Leftrightarrow \frac<\partial M(x, y)> <\partial y>\equiv \frac<\partial N(x, y)> <\partial x>[/math]

Решение: [math]u(x, y) = \int_>^M(x, y)dx + \int_>^N(x_, y)dy = C \: — [/math] Общее решение.

Уравнение, приводящееся к уравнению в полных дифференциалах

только как решать все равно не понятно.
Но.
Если [math]\mu[/math] зависит только от x или только от y, можно выразить ее в явном виде:
[math] \mu(x) = e^<\int \frac<\frac<\partial M> <\partial y>— \frac<\partial N><\partial x>> dx>[/math]
[math] \mu(y) = e^<-\int \frac<\frac<\partial M> <\partial y>— \frac<\partial N><\partial x>> dy>[/math]

Уравнение Бернулли

Определение:
уравнение вида [math]\frac = p(x) y + q(x)y^m, \: m \in \mathbb \setminus \left \< 0, 1 \right \>\:[/math] , называется уравнением Бернулли.

Решение:
[math]y^y’ = p(x)y^+q(x), y \neq 0[/math]
[math](\frac)’ — p(x)y^= q(x)[/math] , пусть [math]z(x) = y^ \: \Rightarrow[/math]
[math]z'(x) — p(x)(1 — m)z(x) = (1 — m)q(x) \: — [/math] линейное относительно z уравнение.

Уравнение Риккати

Определение:
Уравнение вида [math]\frac = p(x)y + q(x) + r(x)y^\:\: (9)[/math] , где [math]p, q, r \in C(a,b)\:[/math] называется уравнением Риккати

Решение:
Пусть [math]y_(x)\: — [/math] частное решение уравнения (9), тогда [math]y(x) = z(x) + y_[/math]
[math]z’ + y’_ = p(z + y_) + q + r(z + y_)^[/math]
[math]z’ = pz + rz^ + 2rzy_\: — [/math] уравнение (8)

Уравнения 1-го порядка не разрешенные относительно 1-й производной

x явно зависит от y’

Решение:
Пусть [math]x = \phi(y’)\:\: (10)[/math]
Перейдем к параметрической системе:
[math] \left\ x = \phi(t) \\y’ = t \end\right.[/math]
[math]dy = t dx = t \phi'(t)[/math]
[math] \left\ y = \int t\phi'(t)dt \\x = \phi(t) \end\right.[/math]

y явно зависит от y’

Решение:
Пусть [math]y = \phi(y’)\:\: (11)[/math]
Переходим к системе: [math] \left\ y = \phi(t) \\y’ = t \end\right.[/math]
[math]dx = \frac<\phi'(t)dt>[/math]

уравнение Лагранжа

Определение:
уравнение вида [math]y = \phi(y’)x + \psi(y’)\:\: (12)[/math] , называется уравнением Лагранжа

Решение:
Переходим к системе:
[math] \left\ y = \phi(t)x + \psi(t) \\y’ = t \end\right.[/math]
[math]dy = (\phi'(t)x + \psi'(t))dt + \phi(t)dx = tdx[/math]
[math](\phi'(t)x+ \psi'(t))dt + (\phi(t) — t)dx = 0[/math]
[math]\Rightarrow \: ]x = F(t, C), \: \phi(t) — t \neq 0[/math]
[math]\left\ x = F(t, C) \\y = \phi(t)F(t, C) + \psi(t) \end\right.[/math]

Уравнение Клеро

Определение:
уравнение вида [math]y = xy’ + \psi(y’)\:\: (13)[/math] , называется уравнением Клеро

Решение:
Пусть [math]y’ = t \: \Rightarrow \: dy = tdx = (x + \psi'(t))dt + tdx \: \Rightarrow \: (x + \psi'(t))dt = 0 [/math]
Тогда либо [math]dt = 0 \: (1)[/math] , либо [math]x + \psi'(t) = 0 \: (2)[/math]
[math](1):\: t = C \Rightarrow y = xC + \psi(C)[/math] — общее решение.
[math](2):\: \left\ x = -\psi'(t)\\y = -\psi'(t)t + \psi(t) \end\right.[/math]

Дифференциальные уравнения второго порядка и высших порядков.
Линейные ДУ второго порядка с постоянными коэффициентами.
Примеры решений

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений. Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка.

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка. А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка. В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят производные более высоких порядков:

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка. Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами. Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение.

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Неоднородное ДУ второго порядка с постоянными коэффициентами имеет вид:
, где и – константы, а – функция, зависящая только от «икс». В простейшем случае функция может быть числом, отличным от нуля.

Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!

Кроме того, чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:

Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:

По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции ничего не записываем.

– это обычное квадратное уравнение, которое предстоит решить.

Существуют три варианта развития событий. Они доказаны в курсе математического анализа, и на практике мы будем использовать готовые формулы.

Характеристическое уравнение имеет два различных действительных корня

Если характеристическое уравнение имеет два различных действительных корня , (т. е., если дискриминант ), то общее решение однородного уравнения выглядит так:
, где – константы.

В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня (от греха подальше лучше сразу же выполнить проверку, подставив корни в уравнение).
Всё, что осталось сделать – записать ответ, руководствуясь формулой

Ответ: общее решение:

Не будет ошибкой, если записать общее решение наоборот: , но хорошим стилем считается располагать коэффициенты по возрастанию, сначала –2, потом 1.

Придавая константам различные значения, можно получить бесконечно много частных решений.

Теперь неплохо бы освежить базовые понятия урока Дифференциальные уравнения. Примеры решений. А что значит вообще решить дифференциальное уравнение? Решить дифференциальное уравнение – это значит найти множество решений, которое удовлетворяет данному уравнению. Такое множество решений, напоминаю, называется общим интегралом или общим решением дифференциального уравнения.

Таким образом, в рассмотренном примере найденное общее решение должно удовлетворять исходному уравнению . Точно так же, как и у диффуров 1-го порядка, в большинстве случаев легко выполнить проверку:

Берем наш ответ и находим производную:

Находим вторую производную:

Подставляем , и в левую часть уравнения :

Получена правая часть исходного уравнения (ноль), значит, общее решение найдено правильно (оно, как проверено, удовлетворяет уравнению ).

Найти общее решение дифференциального уравнения, выполнить проверку

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

На самом деле проверка таких простейших примеров практически никогда не выполняется, но, дело в том, что навык и сама техника проверки очень пригодятся, когда вы будете решать более сложные неоднородные уравнения второго порядка. Поэтому было целесообразно сразу же ознакомить вас с алгоритмом.

Характеристическое уравнение имеет два кратных действительных корня

Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.

Если оба корня равны нулю , то общее решение опять же упрощается: . Кстати, является общим решением того самого примитивного уравнения , о котором я упоминал в начале урока. Почему? Составим характеристическое уравнение: – действительно, данное уравнение как раз и имеет совпавшие нулевые корни .

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

Здесь можно вычислить дискриминант, получить ноль и найти кратные корни. Но можно невозбранно применить известную школьную формулу сокращенного умножения:

(конечно, формулу нужно увидеть, это приходит с опытом решения)

Получены два кратных действительных корня

Ответ: общее решение:

Найти общее решение дифференциального уравнения

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Желающие могут потренироваться и выполнить проверку, но она здесь будет труднее.

Характеристическое уравнение имеет сопряженные комплексные корни

Для понимания третьего случая требуются элементарные знания про комплексные числа. Если материал позабылся, прочитайте урок Комплексные числа для чайников, в частности, параграф Извлечение корней из комплексных чисел.

Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.

Косинус с синусом можно поменять местами, это не принципиально, но обычно первым записывают косинус.

Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:

Если получаются чисто мнимые сопряженные комплексные корни: («альфа» равно нулю), то общее решение упрощается:

Решить однородное дифференциальное уравнение второго порядка

Решение: составим и решим характеристическое уравнение:

– получены сопряженные комплексные корни

Ответ: общее решение:

Решить однородное дифференциальное уравнение второго порядка

Полное решение и ответ в конце урока.

Иногда в заданиях требуется найти частное решение однородного ДУ второго порядка, удовлетворяющее заданным начальным условиям, то есть решить задачу Коши. Алгоритм решения полностью сохраняется, но в конце задачи добавляется один пункт.

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям ,

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня, поэтому общее решение:

Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти ТАКИЕ значения констант , чтобы выполнялись ОБА условия.

Алгоритм нахождения частного решения следующий:

Cначала используем начальное условие :

Согласно начальному условию, получаем первое уравнение: или просто

Далее берём наше общее решение и находим производную:

Используем второе начальное условие :

Согласно второму начальному условию, получаем второе уравнение: или просто

Составим и решим систему из двух найденных уравнений:

Допустимо использовать «школьный» метод решения, но в высшей математике чаще применяют метод почленного сложения/вычитания уравнений системы, посетите соответствующий урок, если не знакомы с методом.

В составленной системе удобно разделить второе уравнение на 2 и почленно сложить уравнения:

Всё, что осталось сделать – подставить найденные значения констант в общее решение :

Ответ: частное решение:

Проверка осуществляется по следующей схеме:
Сначала проверим, выполняется ли начальное условие :
– начальное условие выполнено.

Находим первую производную от ответа:

– второе начальное условие тоже выполнено.

Находим вторую производную:

Подставим и в левую часть исходного дифференциального уравнения :
, что и требовалось проверить.

Таким образом, частное решение найдено верно.

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям , . Выполнить проверку.

Это пример для самостоятельного решения, ответ в конце урока. Если возникли затруднения с нахождение корней характеристического уравнения, прочитайте параграф Извлечение корней из комплексных чисел урока Комплексные числа для чайников. Если не помните значения тригонометрических функций, используйте Тригонометрические таблицы.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение.

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

Таким образом, общее решение в любом случае существует. Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.

Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Решить однородное дифференциальное уравнение третьего порядка

Решение: cоставим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.

Соответствующее характеристическое уравнение всегда имеет ровно четыре корня.

Общее решение записывается точно по таким же принципам, как и для однородных диффуров младших порядков. Единственное, хотелось прокомментировать тот случай, когда все 4 корня являются кратными. Пусть, например, характеристическое уравнение имеет четыре одинаковых корня . Тогда общее решение записывается так:
.

Тривиальное уравнение имеет общее решение:

Решить однородное дифференциальное уравнение четвертого порядка

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Полагаю, практически все смогут расправиться и с однородными дифференциальными уравнениями 5-го, 6-го и высших порядков. Мне очень не хотелось записывать общие формулы, рассказывать о фундаментальной системе решений и т. д. Но, процесс конструирования общего решения вроде раскрыт мной неплохо.

На посошок предлагаю решить однородный диффур как раз для закрепления вашего понимания. Да чего мелочиться:

Решить однородное дифференциальное уравнение шестого порядка

Полное решение и ответ ближе к подвалу. Караул устал – караул упал.

После такой основательной подготовки можно смело переходить к освоению линейных неоднородных уравнений 2-го, а затем и высших порядков.

Решения и ответы:

Пример 2. Решение: cоставим и решим характеристическое уравнение:

, – различные действительные корни
Ответ: общее решение:
Проверка: найдем производную:

Найдем вторую производную:

Подставим и в левую часть исходного уравнения :
, таким образом, общее решение найдено правильно.

Пример 4. Решение: составим и решим характеристическое уравнение:

Получены два кратных действительных корня
Ответ: общее решение:

Пример 6. Решение: составим и решим характеристическое уравнение:

– сопряженные комплексные корни
Ответ: общее решение:

Пример 8. Решение: составим и решим характеристическое уравнение:

– получены сопряженные комплексные корни, поэтому общее решение:
(так получилось, что сначала я записал синус)
Найдем частное решение, удовлетворяющее заданным начальным условиям:
, то есть , (значение константы получилось сразу же).

.
То есть .
Составим и решим систему:

Ответ: частное решение:
Проверка: – начальное условие выполнено.

– второе начальное условие выполнено.

Подставим и в левую часть исходного уравнения:

Получена правая часть исходного уравнения (ноль).
Такие образом, здание выполнено верно.

Пример 10. Решение: составим и решим характеристическое уравнение:

, – получены два различных действительных корня и два сопряженных комплексных корня.
Ответ: общее решение

Пример 11. Решение: составим и решим характеристическое уравнение:

, – получены пять кратных нулевых корней и действительный корень
Ответ: общее решение:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *