Что такое d в интеграле
Перейти к содержимому

Что такое d в интеграле

  • автор:

что такое d в интеграле?

Вот дано выражение
. (тут все понятно). а дальше идет dT — и что d тут делает? Какое это число?

Лучший ответ

Как бы вам объяснить попроще. Определённый интеграл определяется как предел интегральной суммы. Грубо говоря, интервал интегрирования разбивается на множество маленьких отрезочков и берётся сумма произведений длин этих отрезков на значения функции в некоторых точках этих отрезков. Длина одного отрезочка в интегральной сумме обычно обозначается Δxi (или Δti в зависимости от переменной интегрирования) Если устремить длину самого большого отрезка к нулю (число отрезков при этом устремиться к бесконечности) и взять предел, то интегральная сумма превратиться в интеграл. При этом греческая Σ, означающая сумму, превратить в очень вытянутую латинскую S, означающую знак интеграла, а Δ, соответственно, превратится в d, т. е. Δti превратится в dt — знак дифференциала, который, как бы, обозначает отрезок бесконечно малой длины. Т. е. запись интеграла, как бы, говорит нам, что мы складываем площади бесконечного количества бесконечно узких столбиков на графике (беря их со знаком «+», если значение функции положительно и «-» — если отрицательно).

Остальные ответы

Это не число, а просто две буквы d и T вместе обозначают
дифференциал: dT. В принципе можно обойтись и без них,
но тогда надо указывать словами, по какой переменной надо
интегрировать.

Это фактически обозначение операции взятия бесконечно малого кусочка, сокращение от delta.

Что такое интеграл? Теория для чайников

После того, как я рассказал о смысле производной, было бы странным оставить без внимания теоретический материал, посвященный интегралам. На данном уроке мы, наконец, узнаем, что же такое неопределённый и определённый интеграл. При этом основной упор будет сделан не на создание всеобъемлющего и солидного справочника по теории (зачем? есть учебники), а на понимание темы. Статья написана простым языком и рассчитана на широкий круг заинтересованных читателей, включая учащихся старших классов.

С чего начать?

Если вы только-только приступили к изучению интегрального исчисления либо неважно в нём ориентируетесь, то я не рекомендую сразу набрасываться на информацию данной страницы. Почему? Классический научный подход предполагает: а) изучение теории, б) решение практических заданий. Всё вроде бы правильно и логично, но… многие по себе знают, как скучно, а порой и тошно вникать в малопонятные определения, свойства, теоремы и как хочется поскорее захлопнуть учебник, конспект – чтобы всего этого больше никогда не видеть. Объяснение очевидно: теоретические знания наиболее эффективно усваиваются через практику. И это закономерно – сама наука своей бОльшей частью сформировалась на основе конкретных примеров из реальной жизни.

Поэтому сначала лучше ознакомиться с основной сутью и терминологией раздела, а также научиться решать. Хотя бы немного, хотя бы чуть-чуть. Следующие три урока позволят вам быстро освоить начальный уровень по неопределённому интегралу:

Базовые знания по определённому интегралу можно почерпнуть в следующих статьях:

Далее буду предполагать, что вас не поставят в тупик элементарные термины и простейшие интегралы. Кроме того, желательно ПОНИМАТЬ, что такое предел функции, бесконечно малая величина и производная – только тогда чтение будет по настоящему увлекательным, а усвоение материала – качественным. Возможно, требования повергли «чайников» в уныние. однако опускать руки не нужно – все пробелы закрываются в кратчайшие сроки!

Первообразная функция, неопределённый интеграл и его свойства

К понятию первообразной функции приводят многие задачи математического анализа и физики. Рассмотрим былинный физический пример: известен закон изменения скорости тела , требуется найти закон изменения координаты данного тела.

Скорость – это производная от пройдённого пути: (см. урок о смысле производной), таким образом, для решения задачи необходимо по заданной функции (производной) восстановить функцию .

Общая же постановка вопроса такова: в распоряжении есть некоторая функция и возникает потребность выяснить, от какой функции она произошла. То есть, необходимо найти ТАКУЮ функцию , чтобы .

Определение: функция называется первообразной для функции на некотором промежутке, если для всех из этого промежутка выполняется равенство или, что то же: (раскрывать дифференциал мы научились ещё на первом уроке о неопределённом интеграле).

Например, для первообразной функцией на всей числовой прямой будет являться функция . И действительно, для любого «икс»:
.

Простое, но требующее доказательства утверждение:

Теорема: пусть – какая-нибудь первообразная для функции на некотором промежутке. Тогда функция , где – произвольная константа, тоже будет первообразной функцией для на данном промежутке.

Доказательство: поскольку производная константы равна нулю, то:
, следовательно, – первообразная для функции по определению первообразной, что и требовалось доказать.

Так, для функции первообразной будет являться любая функция из множества , где (мысленно поподставляйте конкретные числовые значения).

Докажем обратное утверждение: любая другая первообразная для функции отличается от лишь на приплюсованную константу, иными словами: .

Вот это уже менее очевидный факт. И в самом деле – вдруг для функции существует не только , а какая-нибудь ещё первообразная?

Пусть – это две первообразные для функции на некотором промежутке. Тогда для любого «икс» из данного промежутка производная разности будет равна:

, или если записать короче:

Но с другой стороны, из дифференциального исчисления известно, что данному условию удовлетворяет функция-константа и только она:

Откуда и следует равенство , которое требовалось доказать. Таким образом, любая первообразная для функции имеет вид

Определение: множество всех первообразных для функции называется неопределённым интегралом от функции и обозначается символом . Таким образом, по определению:

Напоминаю, что функция называется подынтегральной функцией, – подынтегральным выражением, а сам процесс отыскания множества первообразных – интегрированием. Интегрирование – это восстановление функции по её производной (обратное действие по отношению к дифференцированию).

Для нашего демонстрационного примера:
, где

Проверка: – исходная подынтегральная функция.

Любая ли функция интегрируема? Нет.

Сформулируем достаточное условие интегрируемости: если на некотором промежутке функция непрерывна, то она интегрируема на нём.

Как видите, условие довольно-таки лояльное – для существования первообразной достаточно лишь непрерывности. Ниже по тексту, если не сказано иного, все функции будем считать интегрируемыми.

Свойства неопределённого интеграла

Нумеровать крайне не люблю, но здесь лучшего варианта не видно:

1) Производная от неопределённого интеграла равна подынтегральной функции; дифференциал от неопределённого интеграла равен подынтегральному выражению:

Доказательство: по определению неопределённого интеграла: , следовательно:
, что и требовалось доказать.

Второе. По правилу раскрытия дифференциала (а точнее, по определению дифференциала) и только что доказанному пункту:

2) Неопределённый интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

Учитывая, что , свойство можно переписать в следующем виде:

Тут даже доказывать ничего не надо, поскольку и получается непосредственно само определение неопределённого интеграла.

Как видите, в обоих случаях значки дифференциала и интеграла взаимно уничтожаются, что естественно.

Следующие два пункта вам хорошо знакомы – это мировое свойство линейности, которое справедливо и для других типов интегралов: определённых, двойных, тройных, криволинейных и пр.

3) Константу можно вынести из-под знака интеграла

То есть, если , то

Доказательство: а вы как думали? =)

Найдём производную левой части. Используем свойство № 1:

Найдём производную правой части. Используем правило дифференцирования и свойство № 1:

Получены одинаковые результаты, из чего и следует справедливость данного свойства.

Вообще, многие доказательства не столько сложны, сколько занудны и формальны – используются определения, ранее доказанные свойства, теоремы и т.д. Но, несмотря на их сухость, немалая часть студентов входит во вкус и даже начинает читать учебники по высшей математике в любой свободный момент =) Будьте осторожны =)

4) Неопределённый интеграл от алгебраической суммы функций равен алгебраической сумме интегралов:

Справедливо для любого количества слагаемых.

Свойство проверяется точно так же, как и предыдущее – берутся производные от обеих частей. Но доказывать его я, пожалуй, не буду – хорошего понемножку =)

Перейдём к ещё более интересному разделу:

Определённый интеграл и его свойства

Настал момент, который все ждали, затаив дыхание. Что такое определённый интеграл и почему он есть площадь? Да и откуда взялся сам значок интеграла? Вот мы много раз слышали: «интеграл, интеграл, интеграл, …». Но понятие же не из космоса прилетело! Читаем:

Пусть функция определена на промежутке . Для определённости и простоты считаем, что функция положительна и непрерывна на данном отрезке. Поставим задачу найти площадь криволинейной трапеции, ограниченной графиком функции , прямыми и осью . Обращаю внимание на тот факт, что непрерывность функции на отрезке заведомо гарантирует существование конечной площади .

Разобьём отрезок на частей следующими точками:
(красные точки):

В результате получено частичных промежутков с длинами соответственно. В общем случае длины различны – какие-то отрезки короче, какие-то длиннее. Максимальную длину называют диаметром разбиения и обозначают буквой «лямбда»: .

Примечание: последняя запись читается, как «максимальное значение из множества (набора) »

В каждом из полученных промежутков опять же произвольно выбираем точки (синие квадратики).

Примечание: («кси») – 14-я буква греческого алфавита

Рассмотрим промежуток . Его длина, очевидно, равна (зелёная обоюдоострая линия). Значению аргумента соответствует значение функции (синие пунктирные линии), и произведение в точности равно площади соответствующего коричневого прямоугольника.

Аналогично устроен каждый отрезок. Составим сумму, которая равна площади коричневой ступенчатой фигуры:

Данная сумма называется интегральной суммой, и её часто записывают в свёрнутом виде:

Примечание: – это значок суммы, а переменная – своеобразный «счётчик», т.е. сначала , затем , потом , … и, наконец,

Что означает прилагательное «интегральной»? В широком смысле слова, интегрировать – это значит, что-то объединять. В данном случае интегральная сумма объединяет площади коричневых прямоугольников и с некоторой точностью приближает площадь криволинейной трапеции:

Теперь зададимся вопросом: как улучшить точность приближения? Действия очевидны – увеличиваем и увеличиваем значение . При этом количество отрезков растёт, а их длины – уменьшаются, в том числе неизбежно уменьшается и максимальная длина . Количество точек тоже возрастает и ступенчатая фигура всё больше и больше напоминает криволинейную трапецию.

И, если количество отрезков разбиения устремить к бесконечности , то интегральная сумма (площадь ступенчатой фигуры) будет стремиться к площади криволинейной трапеции: .

Таким образом, площадь криволинейной трапеции равна пределу интегральной суммы при диаметре разбиения, стремящемся к нулю:

Наблюдаем за удивительным превращением:

1) В рассматриваемом контексте сумму ещё с 17 века обозначали растянутой буквой S (Summa). Это обозначение известно как значок интеграла:

2) Если (и, следовательно, ), то значения стремятся «покрыть» все значения функции из промежутка , то есть:

, при этом пределы интегрирования:

3) И, наконец, длина любого промежуточного отрезка становится бесконечно малой. Обозначение этой бесконечно малой длины мы тоже хорошо знаем, оно указывает, что объединение ведётся по переменной «икс»:

В результате, площадь криволинейной трапеции:

Определение: конечный предел интегральной суммы при , не зависящий ни от способа дробления отрезка , ни от выбора точек , называется определённым интегралом функции по промежутку и обозначается символом .

При этом функция называется интегрируемой в промежутке . Для интегрируемости (а, значит, существования конечной площади), напоминаю, достаточно непрерывности функции на отрезке . Если же на данном промежутке есть участки, где функция, например, не определена (нет её графика), то конечного предела и, соответственно, определённого интеграла не существует.

По аналогичному принципу (дробление отрезка, выбор промежуточных точек, нахождение интегральной суммы, предел и предельный переход) выводятся другие тематические формулы: объема тела вращения, длины дуги кривой, площади поверхности вращения и т. д. Надеюсь, теперь вам будет значительно легче разобраться в соответствующем теоретическом материале.

Если что-то осталось недопонятым, текст следует не спеша перечитать заново либо вернуться к нему позже. Наиболее вероятные затруднения здесь связаны с альфой и омегой математического анализа – предельным переходом; в этом случае советую основательно проштудировать статьи о пределах и теории производной функции.

Всё было бы хорошо, но формулу очень трудно применить на практике (даже для простых функций), поэтому возникает задача отыскания более эффективного пути расчёта площади. И такой путь действительно существует – ведь из определения определённого интеграла следует, что он не зависит от способа разбиения промежутка и от выбора точек . Важен лишь только нижний предел интегрирования «а», верхний предел интегрирования «бэ» и сама функция «эф от икс».

Вывод формулы Ньютона-Лейбница

Рассмотрим тот же график и познакомимся с функцией переменной площади . Что это за функция? Зафиксируем произвольную точку (левая красная точка), лежащую между точками «а» и «бэ»:

В данной точке функция равна площади криволинейной трапеции, которая расположена между зелёной и синей линиями и заштрихована синим цветом. Мысленно начните уменьшать значение «икс» и сдвигать синюю прямую влево – площадь начнёт уменьшаться и, в конце концов, в точке станет равной нулю: (прямые совпадут). Теперь возвращаемся на исходную позицию и сдвигаем синюю линию вправо – в этом случае площадь начнёт расти. И когда мы достигнем верхнего предела (синяя прямая «закроет» красную), площадь будет равна в точности площади всей криволинейной трапеции: .

Таким образом, аргумент может изменяться в пределах , при этом функция (площадь) будет возрастать от до .

Докажем, что функция переменной площади является первообразной функцией для функции , то есть докажем, что .

Вернёмся к нашей точке «икс» и зададим в ней приращение (зелёная стрелка). Для определённости полагаем, что (случай доказывается аналогично). Приращение аргумента влечёт приращение функции – геометрически это площадь криволинейной трапеции, которая заштрихована голубым цветом.

По так называемой теореме о среднем, на отрезке существует точка «цэ» – такая, что площадь коричневого прямоугольника равна площади голубой трапеции:

Примечание: этот участок чертежа схематичен, поскольку мне трудно подобрать идеально точное местоположение точки «цэ»

По определению производной, производная функции – это отношение приращения функции к приращению аргумента при :
.

И, ввиду равенства :

(*) Так как , то точка «цэ» бесконечно близко приближается к точке «икс», и, соответственно:

Таким образом, для любого из рассматриваемого промежутка справедливо равенство , означающее, что функция является первообразной для функции .

По теореме, доказанной в самом начале урока, множество всех первообразных представимо в виде (отличаются друг от дружки константой).

Теперь в данное равенство подставляем и соответствующее значение площади :

, откуда следует, что

Найденное значение константы подставляем в :

Выруливаем на финишную прямую. При функция принимает значение, равное площади всей криволинейной трапеции: . Подставим и в уравнение :

Следует отметить, что в учебниках по высшей математике вывод этой формулы проводится в более солидном ключе – с помощью интеграла с переменным верхним пределом. Я же ограничился упрощенной версией доказательства, чтобы материал был понятен бОльшему количеству читателей.

Это ещё, кстати, не всё =) Завершаем мысль:

В предыдущем параграфе мы доказали, что площадь криволинейной трапеции – есть предел интегральной суммы: .

Но с другой стороны, .

И из этих двух фактов следует лаконичная формула Ньютона-Лейбница:
, где – первообразная функция для функции .

Множество практических примеров на применение формулы можно найти в статьях Определённый интеграл. Примеры решений и Вычисление площади с помощью определённого интеграла, а также в последующих статьях раздела.

Рассмотрим основные свойства определённого интеграла

У меня нет цели копипастить учебники, и я остановлюсь только на тех свойствах, которые имеют существенное значение для практики. Нумерация, пожалуй, ни к чему:

– Свойство, которое уже фигурировало в предыдущем пункте: интеграл с одинаковыми пределами интегрирования равен нулю: . Графическая интерпретация очевидна: криволинейная трапеция вырождается в отрезок, а площадь отрезка с геометрической точки зрения равна нулю.

– Если у интеграла поменять местами пределы интегрирования, то он сменит знак:

Почему? Пусть для определённости . Тогда при перестановке пределов интегрирования разбиение отрезка будет проводиться справа налево (вспоминаем ступенчатую фигуру 1-го чертёжа), и длины частичных промежутков формально станут отрицательными , поэтому интегральная сумма и сам интеграл (как предел суммы) сменит знак.

Следует заметить, что на практике намного чаще пользуются вторым случаем – когда изначально , например:

Цель этих действий – расставить пределы интегрирования в привычном порядке, хотя исходный интеграл и так рассчитывается без всяких проблем. Однако не редкость, когда перестановка пределов интегрирования не только удобна, но и рациональна.

– Свойство аддитивности. Какими бы ни были точки :

Здесь в первую очередь, конечно же, напрашивается ситуация, когда точка «цэ» лежит внутри отрезка . Просто и естественно – криволинейную трапецию можно разделить на две части, т.е. изначальная площадь будет равна сумме площадей. Но данное свойство работает и в «нестандартном» случае, когда точка «цэ» лежит вне промежутка . Желающие могут проанализировать это самостоятельно.

Разумеется, формула работает и справа налево, таким образом, определённый интеграл можно как разделить на части, так и «склеить» из частей. Очень удобная вещь!

Пожалуйста, запомните! Если подынтегральная функция , то (здесь и далее полагаем, что ). И, наоборот, если , то интеграл будет неположительным: .

Свойство элементарно доказывается: снова вспоминаем, что . Длины частичных промежутков положительны: , но в первом случае значения функции (криволинейная трапеция лежит не ниже оси абсцисс), а во втором случае (криволинейная трапеция лежит не выше оси абсцисс)

Таким образом, если при вычислении интеграла у вас получилось отрицательное значение – ищите ошибку. Функция на промежутке интегрирования (и, к слову, вообще на любом ненулевом промежутке), поэтому интеграл обязательно должен получиться положительным.

Наоборот – если интеграл получился положительным, то здесь тоже где-то допущена ошибка, поскольку на отрезке .

! Совет: перед решением любого определённого интеграла всегда полезно проанализировать знак подынтегральной функции!

Ещё одно важное свойство. Если функции интегрируемы на , и для всех «икс» из данного промежутка справедливо неравенство , то

Тоже всё наглядно – график функции расположен не ниже графика функции , поэтому площадь будет не меньше, а на практике почти всегда – больше площади .

Из данного свойства следует важнейшая рабочая формула вычисления площади фигуры, ограниченной графиками функций и прямыми :

Рассмотрим конкретную задачу, поясняющую геометрический смысл данного свойства, а то я чувствую, вы уже изнываете без практики =)

Оценить определенный интеграл

Решение: подынтегральная функция непрерывна на отрезке , а значит, достигает на нём и – наименьшего и наибольшего значений. Решаем стандартную двухшаговую задачу по нахождению :

1) Вычислим значения функции в критических точках, принадлежащих отрезку:

2) Вычислим значения функции на концах отрезка:

Длина отрезка интегрирования:

В результате, оценка определённого интеграла:

Ответ:

Геометрически это означает, что площадь криволинейной трапеции (синяя штриховка) не меньше площади красного прямоугольника и не больше площади зелёного прямоугольника :

Да, оценка, конечно, очень грубая, но таково задание и оно иногда встречается в контрольных работах. Кстати, интеграл является неберущимся, и вычислить заштрихованную площадь можно лишь с определённой точностью, например, методом трапеций, по формуле Симпсона, с помощью разложения функции в ряд, др. способами.

– И в заключение параграфа – теорема о среднем: если функция непрерывна на , то существует точка – такая, что . Геометрический смысл теоремы я уже использовал при выводе формулы Ньютона-Лейбница, единственное, там речь шла о кусочке криволинейной трапеции, здесь же – о всей фигуре. Грубо говоря, всегда существует прямоугольник со стороной (длина отрезка интегрирования), площадь которого равна площади .

Доказательство опустим, поскольку в нём фигурируют другие теоремы математического анализа.

А сейчас оставшихся со мной читателей ждёт вознаграждение, позволяющее проникнуться, если хотите, философией темы:

Общая концепция задачи интегрирования

В предыдущих пунктах мы разобрали задачу нахождения площади, но это частная и довольно малая область применения интегрального исчисления. Существует великое множество задач интегрирования, при этом наибольшим разнообразием отличается даже не математика, а физика. Вернёмся к самому смыслу термина: интегрирование – это объединение. А объединить, как вы понимаете, можно много чего =) И в общем виде задача интегрирования ставится следующим образом, не судите строго, формулирую своими словами:

Требуется найти значение величины на отрезке . Величина – это не обязательно площадь, объём либо какое-то другое геометрическое понятие. Это может быть что-нибудь с ярко выраженным физическим смыслом, например, работа силы. При этом известна производная величина, заданная функцией на том же промежутке . Рассматриваемый отрезок и аргумент «тау» – тоже не обязательно геометрия, речь может идти, скажем, о временнОм промежутке и времени.

В предположении о непрерывности функции на , задача решается в два этапа:

Сначала рассматривается бесконечно малый отрезок промежутка , на котором произведение равно бесконечно малому «кусочку» от разыскиваемого значения . То есть, справедливо равенство .

Далее проводится объединение (интегрирование) всех бесконечно малых элементов по отрезку , в результате чего и получается суммарное значение искомой величины: .

Примечание: в теории и практике вышеизложенные равенства почти всегда записывают в обратном порядке: . Стандарты нарушены только для лучшего понимания материала.

Давайте вспомним 1-й чертёж урока, где мы установили, что площадь криволинейной трапеции равна определённому интегралу . Ведь что такое произведение ? Данное произведение выражает площадь прямоугольника с высотой и бесконечно малой длиной . Иными словами, это элементарный «кирпичик» площади: .

Объединяя (интегрируя) эти бесконечно малые прямоугольники по отрезку , мы и получаем площадь всей криволинейной трапеции: .

Заключительные примеры позволят вам ещё лучше понять сущность интегрирования:

Вычислить объём эллипсоида

Решение: перепишем уравнение эллипсоида в каноническом виде и выполним чертёж. Ввиду симметрии тела достаточно вычислить объём в 1-м октанте:

Прежде всего, обратим внимание на заштрихованную «площадку» – она представляет собой «четвертинку» эллипса с большой полуосью и малой полуосью , длины которых зависят от значения «зет». Сама площадь , разумеется, тоже величина переменная: мысленно положите сверху ладошку и начните опускать лифт вниз. Длины , а вместе с ними и площадь – начнут возрастать. Максимальные значения будет достигнуты в плоскости : . В Примере № 2 урока о площади и объеме при параметрически заданной линии выведена формула площади эллипса . У нас же одна четверть эллипса, поэтому площадь «на нулевом этаже» будет составлять

Теперь поднимаем заштрихованную «площадку» ладошкой вверх – полуоси и площадь будут уменьшаться – до тех пор, пока при не выродятся в точку; площадь здесь станет нулевой: .

В чём состоит трудность нахождения объёма данного тела? Трудность состоит в том, что стОит нам чуть-чуть «дёрнуться» и площадь эллипса изменится. Что делать? Использовать общий принцип интегрирования:

На первом шаге рассматриваем «площадку» бесконечно малой толщины . При этом произведение площади на высоту будет равно элементарному, бесконечно малому элементу объема тела: .

На втором шаге «плавно поднимаемся на лифте с 0-го на 5-й этаж», объединяя ВСЕ элементарные слои объёма: – получая тем самым итоговый объём тела.

Суть разобрана, остальное – дело техники:

1) Найдём функцию длины большой полуоси эллипса. Для этого в уравнении эллипсоида обнуляем «игрековую» координату:

Поскольку дело происходит в 1-м октанте, то перед корнем будет знак «плюс»:

2) Аналогично находим функцию длины малой полуоси. В уравнении эллипсоида обнуляем «иксовую» координату и выражаем :

3) Составим функцию площади , не забывая, что это «четвертинка» эллипса:

И, наконец, «запускаем лифт», объединяя элементарные частички объёма :

Так как рассматривалась только часть эллипсоида, результат умножаем на 8.

Ответ:

Если решить задачу с каноническим уравнением (в общем виде), то получится формула объема эллипсоида:

Следует отметить, что в общем случае эллипсоид не является телом вращения, поэтому к нему не применим «обычный» метод нахождения объема, изложенный в статье Объем тела вращения. Таким образом, разобранная задача оказывается не только поучительной, но ещё и крайне полезной. Желающие могут найти (Раздел IV Интегралы, Задача 20) ещё порядка 30 похожих примеров и потренироваться.

Для полноценной картины как нельзя кстати будет физика:

Найти путь, пройдённый телом в промежуток времени от до , если известен закон изменения его скорости (м/с)

Решение: обозначим через расстояние, пройдённое телом за 5 – 2 = 3 секунды – начиная с момента времени и заканчивая моментом .

Немного проанализируем задачу. Вот если бы тело двигалось с постоянной скоростью, например, 7 м/с, то никаких проблем – оно бы за 3 секунды прошло путь в метр. Но у нас движение даже не равноускоренное (при котором ещё можно извернуться без матана) – у нас закон изменения скорости нелинейный. При этом в начальный момент времени скорость равна м/с, а в конечный момент: м/с. Но от этой информации легче не стало – какое расстояние успело пройти тело за эти три секунды?! Задание осложняется ещё и тем, что скорость существенно возрастает даже за малые промежутки времени, поэтому у нас нет и близкой оценки пройдённого пути.

Как быть? На помощь приходит интегрирование. Рассмотрим бесконечно малый промежуток времени , на котором скорость тела можно считать постоянной (или, как говорят физики, мгновенной). Тогда произведение данной скорости на промежуток времени равно элементарному бесконечно малому «кусочку» пройдённого пути: (скорость умножить на время – это же расстояние, верно?).

Всё что осталось сделать – это объединить микроскопические «шажочки» на временнОм промежутке :

Ответ: 45 метров

Ну а у меня такое впечатление, что эту статью я создавал 45 лет =) …хотя вроде бы она не самая большая, да и чертежи быстро сделал… Наверное по той причине, что довольно долго обдумывал, что включить в содержание, а что оставить за кадром. Так или иначе, думаю, что отобранная информация значительно повысила ваш уровень понимания темы.

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Производная и интеграл — проще некуда

В комментариях к ней некоторые пользователи указали, что объяснение получилось не очень интуитивным, например:

“Тема сама по себе интересная, недавно снова повторял курс, но должен сказать, что на мой взгляд, в материале нет изюминки. Автор прав, что в современных изданиях часто даются темы без описания их прикладного применения, из-за чего непонятен смысл их изучения.

Но конкретно интегралы это такая тема, которую надо описать или короче, чем у вас, или намного дольше.
Иначе и школьник не поймет, и те, кто знает, ничего нового не откроют.»

Я попробую изложить материал максимально коротко и просто. Так, чтобы школьники, наконец, поняли, пусть и с помощью родителей. Итак:

Я живу на плоскости, и мой мир выглядит так:

Все мои перемещения ограничиваются прямой линией, которую я называю «ось абсцисс» и обозначаю ее латинской буквой х. Таким образом, я могу гулять от точки, обозначенной цифрой ноль (там находится мой дом), вправо до бесконечности и назад, до нуля. Цифры на оси абсцисс позволяют мне понять, как далеко я от дома. Сейчас я нахожусь в 10 делениях от него.

Да, я слышал, что есть миры, в которых можно перемещаться и влево от нуля, и там расстояния обозначаются отрицательными числами: -1, -2 и т. д., до бесконечности. Кроме того, в тех мирах можно опуститься ниже оси абсцисс, но мой мир максимально прост.

Как-то раз, летящие птицы навели меня на мысль, что по нашему миру можно перемещаться не только влево или вправо, но и «вверх». Потом я узнал, что есть некие люди, умеющие строить дороги, ведущие в наши плоские небеса. Было бы неплохо бы с ними переговорить. И вот я общаюсь со специалистом (С), по строительству таких дорог:

Я: Здравствуйте, вы занимаетесь строительством дорог в небо?

С: Добрый день, да.

Я: А какие дороги вы умеете строить?

С: Самые простые варианты — прямые дороги различной крутизны.

Я: А что такое «крутизна»? Я всегда жил на горизонтальной прямой, и понятия не имею, что это слово может значить.

С: «Крутизна» показывает то, насколько трудно будет вам подниматься (или опускаться) по данной дороге. Чем круче дорога, тем тяжелее подъем или спуск. Давайте нарисуем на нашей плоскости еще одну ось — вертикальную. Мы назовем ее осью ординат, и обозначим латинской буквой у. На этой оси есть цифры, обозначающие «высоту» — расстояние до оси х.

Чтобы нам было проще ориентироваться в нашем двухмерном мире, нанесем на его плоскость линии, идущие от цифр, расположенных на осях х и у:

Теперь любое место (точку) на плоскости мы можем обозначить двумя цифрами. Первая цифра будет обозначать расстояние от нуля до проекции этой точки на ось х.

Я: Простите, а что такое «проекция»?

С: Видите внизу, на оси абсцисс, тень от летящей птицы? Она находится в точке, обозначенной цифрой 6 на оси х. Эта тень и есть проекция тела птицы на ось х. А если бы Солнце находилось справа от птицы, мы бы увидели ее тень на оси у, в районе цифры 8. Это есть проекция тела птицы на ось ординат. Она показывает, на какой высоте летит птица. То есть, расстояние от «земли» (от оси х) до нее.

Мы можем обозначить положение птицы двумя цифрами (6, 8). Первая цифра — проекция на ось х, вторая — проекция на ось у. Эти две цифры мы называем координатами птицы.

Вместо запятой между целой и дробной частями чисел, я буду ставить точку (т.е., не 13,5 а 13.5) для того, чтобы не путать с запятыми между соседними числами.

Я: Отлично, что дальше?

С: Дальше мы отгоним птицу и нарисуем дорогу:

Вы можете заметить, что эта дорога поднимается на одну клеточку вверх, при перемещении проекции на ось х на одну клеточку вправо.

Когда человек перемещается из точки с координатами (4, 4) в точку с координатами (10, 10), его проекция на ось х меняется на 6 цифр. То есть, его тень перемещается вправо на 6 единиц (клеточек). Такое же изменение проекции происходит по оси у. То есть, он одновременно поднимается вверх также на 6 единиц.

Изменение какого-либо параметра (например, проекции на ось х или у), мы обозначаем буквой d (дельта). Изменение высоты мы запишем как dy, а изменение проекции на ось х — как dx. То есть, в данном случае, dу = 6, и dx также = 6.

Разделив изменение высоты на изменение положение тени человека при его перемещении (dy/dx), мы узнаём крутизну данного участка дороги: 6 / 6 = 1.

В нашей проектной документации мы используем очень краткое описание маршрута прокладываемой дороги. В данном случае оно будет выглядеть как математическая формула у = 1*х.

Это значит, что у всегда равен х, и это справедливо для любой точки дороги. Если человек будет находиться, например, в точке, тень от которой падает на ось х в точке 15, он будет находиться на высоте 15. Два параметра — положение тени человека на оси абсцисс и высота, на которой он находится, жестко связаны между собой вышеуказанной формулой.

Разумеется, можно было просто указать крутизну дороги одно цифрой, в данном случае, единицей, но проблема в том, что во-первых, дороги не всегда начинаются у вашего дома — в точке с координатами (0, 0). Во-вторых, существуют дороги, крутизна которых не постоянна. Но о них позже. А пока давайте нарисуем еще пару прямых дорог:

Мы видим, что верхняя дорога поднимается круче, чем та, которую мы рассмотрели ранее. А нижняя дорога — наоборот, более пологая. Высота (проекция на ось у), на которой находится человек, идущий по верхней дороге, равна 10. То есть, перемещаясь от начала координат до точки, в которой он находится сейчас, он изменил свою проекцию на ось у на 10 единиц. В то же самое время, его тень (проекция на ось х) переместилась вправо всего на 5 единиц. Разделив 10 на 5, мы получаем цифру 2. Эта цифра — соотношение высоты и удаленности от нуля по оси х — есть показатель крутизны дороги. Понятно?

Я: Да, я понял это еще на первом примере. А если мы разделим проекцию перемещения человека, идущего по нижней дороге на ось у, на перемещение его тени по оси х, (5/10), мы получим цифру 0.5, или 1/2. Это и есть показатель крутизны нижней дороги?

С: Совершенно верно! Между каждой из дорог и осью х (горизонталью) есть некоторый угол. Чем больше этот угол, тем круче поднимается дорога. Соотношение координаты любой точки дороги (если дорога прямая) по оси у и координаты этой же точки по оси х, называют тангенсом этого угла. Для каждого угла — свой тангенс. Тангенс угла верхней дороги равен 2, тангенс угла нижней, более пологой дороги, равен 0.5. Соответственно, формулы, которыми мы опишем две последние дороги будут выглядеть как у = 2х и у = 0.5х.

Эти формулы мы называем функциями. Мы говорим, что у — функция от х, где х независимая переменная (мы ее задаём), а у зависимая переменная, так как мы ее вычисляем, исходя из заданного значения х. И она жестко зависит от значения х. Например, задав х = 12 для дороги, описываемой формулой у = 0.5х, мы, подставляя цифру 12 вместо х, узнаём, что у в этой точке равен 6.

В математике функции обозначают, например, так: f(x) = x. Эта функция справедлива для дороги, рассмотренной нами в самом первом примере. Для второй и третьей дорог, функции будут выглядеть соответственно, как f(x) = 2x и f(x) = 0.5x. Не очень сложно, да?

Я: Не очень. Что еще мне нужно знать о дорогах?

С: Мы делаем не только прямые дороги. Например, мы можем построить дорогу, которая описывается формулой (функцией) у = x 2 , или f(x) = x 2 . Крутизна этой дороги будет увеличиваться, по мере ее удаления от оси у.

Чтобы построить рисунок этой дороги, мы найдем (вычислим) координаты нескольких ее точек. Для этого мы подставим в формулу у = x 2 вместо х сначала 1, потом 2, затем 3 и т.д. И рассчитаем значение у для всех этих точек. Сначала подставим 1:

y = х 2 = 1 2 = 1.

Это значит, что для точки, с координатой по х равной 1, ее координата по у также равна 1. Нанесем эту точку на график:

Теперь рассчитаем координату по у для точки, с координатой по х равной 2:

y = x 2 = 2 2 = 4.

Таким образом, наша вторая точка будет иметь координаты (2, 4). Рассчитав у для точек с координатами по х 3 и 4, получим их полные координаты (3, 9) и (4, 16) соответственно. Нанесем эти точки на график:

Теперь соединим все точки линией, обозначающей дорогу:

Для любой точки этой дороги справедлива формула y = x 2 . Например, для точки, с координатой по х = 1,5, мы получим ее координату по у, возведя 1,5 в квадрат. То есть, ее координаты (1.5, 2.25). Таким образом, мы можем узнать высоту любой точки дороги, задавая ее абсциссу (положение ее тени на оси х).

Но возникает проблема: мы не можем посчитать крутизну какой-либо точки дороги, так как она меняется постоянно. Не получится просто взять две точки дороги сверху и снизу от исследуемой и посмотреть, насколько изменится высота при прохождении пути между ними, разделив перемещение проекции на ось у на перемещение тени по оси х. Точнее, мы можем это сделать, но полученная цифра не будет соответствовать крутизне в средней точке между ними. Смотрите:

Допустим, мы хотим узнать крутизну нашей кривой дороги на участке от начала координат (точки с координатами (0, 0)), до точки с координатами (3, 9). На этом участке дорога поднимается на 9 единиц, в то время, как удаление от начала координат по х составляет 3 единицы. Считаем крутизну так же, как мы считали ее для прямой дороги: 9 / 3 = 3. То есть, крутизна на этому участке, вроде бы, равна 3. Но если мы проведем прямую с крутизной, равной 3, то увидим, что на самом деле дорога в самом низу идет гораздо более полого, чем прямая, а в точке пересечения прямой и дороги, крутизна дороги уже больше крутизны прямой! Крутизна кривой в центре между этими точками также не совпадает с крутизной прямой. Засада. Что же делать? Как нам узнать крутизну каждой точки в ситуации, когда первая постоянно меняется, и нет ни единого прямого участка? Вот для таких случаев господин Ньютон и придумал дифференцирование.

Дифференцирование преобразует нашу функцию в другую функцию, которая как раз-таки позволяет точно вычислить крутизну дороги в данной точке. Мы не будем вдаваться в то, как он пришел к своему решению, а просто воспользуемся результатом его работы — таблицей дифференциалов. Я не буду ее приводить, в Сети такого добра навалом. Можно просто ввести в строку поиска формулу, которую нужно дифференцировать.

Для нашей функции f(x) = x 2 дифференцирование будет выглядеть таким образом: нам нужно перенести двойку из показателя степени влево, перед х, и уменьшить степень х на единицу. То есть, в данном случае степень х станет равна 1: f ‘(x) = 2x.

Обратите внимание на штрих после буквы f: f ‘(x) — так обозначается функция, которая произошла от нашей оригинальной функции. Поэтому ее называют производной функцией.

Но что нам теперь делать с этой производной? Как с ее помощью найти крутизну какой-либо точки оригинальной функции f(x) = x 2 ? Очень просто. Мы подставляем в производную значение проекции на ось х, точки дороги, крутизна которой нас интересует. Допустим, мы хотим узнать, насколько круто поднимается дорога в точке, находящейся над цифрой 1 по оси х. Мы подставляем эту единицу в производную, и вычисляем значение:

f ‘(x) = 2x = 2*1 = 2.

Эта двойка и показывает нам крутизну дороги над точкой 1 по оси х.

А какова крутизна дороги в точке с абсциссой 4 (проекцией на ось х = 4)? Подставляем эту четверку в производную функцию f ‘(x) = 2x = 2*4 и получаем цифру 8.

Эта восьмерка означает, что крутизна дороги в точке с абсциссой 4 равна 8. То есть, в этой точке дорога поднимается так же круто, как верхняя прямая на правом графике. Вот и весь смысл дифференцирования (нахождения производной).

Слева — график самой дороги, а справа — прямые, крутизна которых соответствует крутизне дороги в указанных точках. То есть, в указанных точках дороги подниматься так же тяжело, как по соответствующим этим точкам прямым. «Здесь так же круто, как там».

Давайте найдем производную нашей самой первой функции f (x) = x.

Мы проделаем такой же трюк: перенесем степень переменной вперед, перед х (это ничего не изменит, так как степень х была равна 1). Кроме того, мы уменьшим степень х на единицу. При этом степень станет равна нулю, и х превратится в единицу (потому, что любое число (кроме нуля) в нулевой степени равно 1).

Мы получили производную функции f(x) = x. Она выглядит так: f ‘(x) = 1. Что это значит? Это значит, что крутизна данной дороги на любом ее участке равна 1. То есть, при изменении абсциссы на dx, dy изменится ровно на такую же величину. В принципе, мы это знали и раньше, но теперь мы вычислили крутизну дороги через производную.

В учебниках пишут, что производная постоянной (некоторого числа) равна нулю. Почему это так?

Давайте построим дорогу, которая описывается функцией f(x) = 5. Это означает, что высота (проекция на ось у) любой точки данной дороги всегда равна 5, следовательно, dy (изменение высоты) равно нулю.

Поэтому эта дорога идет параллельно оси абсцисс, то есть, никакого изменения высоты не будет, на сколько бы мы не перемещались вправо. А раз крутизна дороги равна нулю, то и производная данной функции равна нулю (dy/dx = 0/dx = 0).

Повторим: производная отображает крутизну функции (графика, дороги), а в данном случае никакой крутизны нет. Что и имеется ввиду, когда говорят, что производная постоянной равна нулю.

Я: Хорошо, я все понял: по оригинальной функции я могу вычислить высоту дороги в любой ее точке, а по производной — крутизну в любой ее точке. Но дорога не может висеть в воздухе, она же должна опираться на ось х?

С: Совершенно правильный вопрос. Под дорогой нам придется сделать насыпь. И чем больше материала (клеточек) мы потратим на данный участок дороги, тем больше вам придется заплатить.

Я: А как вы посчитаете, сколько клеточек вам понадобится? Для участка прямой дороги, параллельной оси абсцисс f(x) = 5, все просто:

У нас получается прямоугольник, высота которого равна постоянной 5, а длину мы можем посчитать, вычитая координату по х левой стороны прямоугольника из координаты его правой стороны: 10 — 3 = 7. То есть, ширина прямоугольника равна 7, соответственно, его площадь равна 5 * 7 = 35 клеточек. Я буду вам должен за 35 клеточек.

Нет проблем и с дорогой, которая поднимается (или опускается) по прямой.

Как и в предыдущем случае, ширину основания мы узнаём, вычитая координаты границ по оси х друг из друга: 9 — 3 = 6.

Высоту найти немного сложнее: нам придется вычислить ее среднее значение. Для этого мы берем высоту (проекцию на ось у) левой верхней точки закрашенной фигуры, прибавляем к ней высоту правой верхней точки и делим пополам:

(1.5 + 4.5) : 2 = 3. Эта тройка — средняя высота фигуры. Мы умножаем ее на ширину фигуры и получаем цифру 18. То есть, на данный участок дороги потрачено 18 клеток, верно? Но как узнать, сколько клеток потребует участок дороги типа y = x 2 ?

С протяженностью участка дороги слева направо разобраться легко, она равна 4 — 1 = 3 клетки, но как быть с высотой? Ведь мы не можем в данном случае сложить 1 и 16, затем разделить пополам и получить среднюю высоту фигуры? Как нам посчитать площадь этой насыпи?

С: Господин Ньютон предусмотрел и это. Метод подсчета площади криволинейных фигур называется «интегрирование». Нам придется вспомнить то, как мы находили производную функции f (x) = x 2 Она выглядит так: f ‘(x) = 2x.

Эту, как и многие другие математические операции, можно производить и в обратную сторону. Если нам известна производная функции, мы можем восстановить эту изначальную функцию, называемую первообразной. То есть, имея функцию, показывающую изменение крутизны дороги, мы можем восстановить функцию, показывающую саму дорогу — высоту любой ее точки.

Если для нахождения производной мы переносили вперед показатель степени переменной (двойку), и уменьшали степень переменной х на единицу

f(x) = x 2 => f ‘(x) = 2x,

то теперь нам следует поступить ровно наоборот: двойку, стоящую перед х следует перенести наверх, в степень: f ‘(x) = 2x => f(x) = x 2 .Так мы получаем первообразную функцию. То есть, ту функцию, от которой производная произошла.

Но не все так просто, давайте рассмотрим дорогу, описываемую функцией

f (x) = x 2 + 4:

Она выглядит точно так же, как дорога f (x) = x 2 , но располагается выше. Если мы найдем производную этой функции, то обнаружим, что она выглядит точно так же, как производная от функции f (x) = x 2 ! То есть, как f ‘(x) = 2x. Ибо при нахождении производной четверка (постоянная) будет отброшена.

С: Потому, что она не влияет на крутизну графика. Вы же помните, что производная описывает крутизну оригинального (первообразного) графика на каждом его участке? А теперь посмотрите на точки обоих графиков, расположенные, к примеру над цифрой 3 на оси х. Крутизна верхнего и нижнего графиков в этих точках одинакова! То же самое касается любых двух точек этих графиков, расположенных друг под другом. Эти две дороги идут параллельно друг другу, поэтому, их крутизна везде совпадает. Отличается только высота.

Но производная — это не про высоту, а про крутизну дороги. Потому и получается, что обе функции f (x) = x 2 и f (x) = x 2 + 4 приводят к одной и той же производной f ‘(x) = 2x.

Я: Погодите, но тогда получается, что функции, к примеру, f (x) = x 2 + 5 или f (x) = x 2 + 1.3 и даже f (x) = x 2 — 2 также приводят к одной и той же производной? Ведь они все параллельны друг другу, и их крутизна в точках, расположенных друг под другом, совпадает?

С: Да, наша производная имеет бесконечный набор первообразных. Поэтому первообразную функции f (x) = 2x записывают как F (x) = x 2 + C, где буква С может быть любым числом. От этого числа зависит только высота, на которой проходит дорога. Точнее, разница высот между данной дорогой, и дорогой, у которой С = 0. Если Вы снова посмотрите на графики выше, то увидите, что любая точка верхнего графика ровно на 4 клетки выше аналогичной точки нижнего графика.

Обратите внимание также на то, что буква F в первообразной — заглавная (большая), Первообразная является «матерью» производной, поэтому мы относимся к ней с уважением, и пишем ее имя заглавной буквой.

Все множество функций, описываемых формулой F (x) = x 2 + C, называется неопределенным интегралом. Самая распространенная формула для нахождения неопределенного интеграла выглядит так:

По этой формуле мы можем найти неопределенный интеграл нашей функции f (x) = x 2 . Для этого мы увеличиваем степень переменной на единицу, а в знаменатель просто ставим получившуюся степень переменной. Степень нашей переменной была 2, увеличив ее на единицу, получаем x 3 . Эту же тройку мы ставим в знаменатель (под дробную черту). Получается выражение F (x) = x 3 /3 + С.

Теперь вернемся к нашей криволинейной фигуре.

Чтобы узнать ее площадь, в полученный нами неопределенный интеграл нужно подставить абсциссу ее правой границы — цифру 4 (при этом постоянная С отбрасывается):

F (x) = x 3 /3 = 4 3 /3 = 21 1/3 (двадцать одна целая и одна треть)

То же самое проделаем с левой границей фигуры:

F (x) = x 3 /3 = 1 3 /3 = 1/3 (одна треть)

Теперь нам остается вычесть из первого числа второе: 21 1/3 — 1/3 = 21

Искомая площадь равна 21 клетке. Для проверки вы можете примерно посчитать закрашенные клетки на картинке.

Давайте подытожим все вышесказанное. Итак, у нас есть некоторая формула (функция) f(x), описывающая некую линию на графике.

Чтобы найти крутизну этой линии (функции) в какой-либо ее точке, мы находим производную данной функции f ‘(x), затем подставляем в полученную производную проекцию на ось х интересующей нас точки оригинальной функции, и вычисляем искомый параметр. Полученная цифра будет показывать тангенс угла наклона прямой, которая поднимается (или опускается) так же круто, как исходный график в исследуемой точке.

А чтобы найти площадь под участком графика исходной функции, следует найти ее первообразную F, затем, в эту первообразную по очереди подставить координаты по х правой и левой границы фигуры, площадь которой мы хотим найти, а затем вычесть два полученных числа друг из друга. Результат вычитания и есть искомая площадь.

Я: А почему вы отбросили постоянную С? Разве это не приведет к тому, что площадь под участками кривых f (x) = x 2 и f (x) = x 2 + 4, находящимися друг под другом, будут одинаковыми?

С: Не беспокойтесь, при нахождении интеграла второй функции, постоянная 4 в ее первообразной превратится в , поэтому, к площади под ней добавится прямоугольник высотой 4 клеточки и ошибки не будет. Ну так что, какую дорогу Вы выбираете?

  • Математика
  • Научно-популярное

Интегрирование подведением под знак дифференциала

Подведение под знак дифференциала — что это такое?

Подведение под знак дифференциала решает возникающую при интегрировании проблему, заключающуюся в том, что в подынтегральном выражении находится сложная функция, например, , , и т. п., а под знаком дифференциала d — просто икс. То есть нет возможности сразу применить таблицу интегралов для нахождения такого интеграла.

Цель подведения под знак дифференциала — получить простую функцию, которую можно интегрировать непосредственно, то есть по таблице интегралов. Тогда путём преобразований подынтегрального выражения получим простую функцию переменной и эта переменная будет находится и под знаком дифференциала d.

Решение заключается в том, что аргументом подынтегральной функции становится промежуточный аргумент («внутренняя» функция исходной сложной функции, например, , , и т. п.), который можно обозначить буквой u, и тот же промежуточный аргумент u подводится под знак дифференциала d.

После того, как такой интеграл будет найден, на место буквы u возвращается обозначаемый ею промежуточный аргумент, и таким образом будет окончательно найден интеграл исходной сложной функции.

Формальная общая запись описанных преобразований выглядит так:

где — «внешняя» функция, а — «внутренняя» функция или промежуточный аргумент.

В примерах вместо буквы u будем использовать букву t: так наши решения будут близки к наглядно понятному методу замены переменной. Кстати, в некоторых источниках метод подведения под знак дифференциала считается частным случаем метода замены переменной.

Повторим: наиболее частый случай, когда выгодно применять подведение под знак дифференциала — подынтегральное выражение представляет собой сложную функцию. Но это не единственный случай, когда требуется применять этот метод интегрирования. Другой распространённый случай — когда нет смысла использовать замену переменной, так как это делает вычисления громоздкими. Тогда, чтобы вычисления были короче, можно использовать подведение под знак дифференциала.

Пример 1. Найти подведением под знак дифференциала интеграл:

Решение. Внесём под знак дифференциала внутреннюю функцию. Это почти то же самое, что найти её производную. Получаем

Полученное нужно перенести в подынтегральное выражение, но в нём нет множителя-тройки перед дифференциалом. Значит, перед знаком интеграла ставим 1/3 и получаем:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 7:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Пример 2. Найти подведением под знак дифференциала интеграл:

Решение. Сразу же видим, что дифференциал синуса от икса равен косинусу от икса, а это как раз то, что нам нужно. Внесём под знак дифференциала синус от икса. Получаем

Полученное переносим в подынтегральное выражение:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 7:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Пример 3. Найти подведением под знак дифференциала интеграл:

Решение. Внесём под знак дифференциала внутреннюю функцию. Получаем

Полученное нужно перенести в подынтегральное выражение, но в нём нет множителя-двойки перед дифференциалом. Значит, перед знаком интеграла ставим 1/2 и получаем:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 7:

Применить подведение под знак дифференциала самостоятельно, а затем посмотреть решение

Следующие задачи — общий случай: решаются по определению дифференциала функции:

Пример 4. Найти подведением под знак дифференциала интеграл:

Пример 5. Найти подведением под знак дифференциала интеграл:

Продолжаем решать задачи вместе

В следующих задачах используются правила дифференцирования и интегрирования констант:

Так как , то , иными словами, константу можно подвести под знак дифференциала.

Пример 6. Найти подведением под знак дифференциала интеграл:

Так как , где C — произвольная константа, то .

Пример 7. Найти подведением под знак дифференциала интеграл:

Пример 8. Найти подведением под знак дифференциала интеграл:

Решение. Внесём под знак дифференциала внутреннюю функцию — минус икс в квадрате. Получаем

Полученное нужно перенести в подынтегральное выражение, но в нём нет множителя-минус двух перед дифференциалом. Значит, перед знаком интеграла ставим -1/2 и получаем:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 11:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Пример 9. Найти подведением под знак дифференциала интеграл:

Решение. Внесём под знак дифференциала внутреннюю функцию — логарифм икса. Получаем

Полученное нужно перенести в подынтегральное выражение:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 12:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Пример 10. Найти подведением под знак дифференциала интеграл:

Решение. Внесём под знак дифференциала внутреннюю функцию — ту, что в знаменателе. Получаем

Полученное нужно перенести в подынтегральное выражение, но в нём нет множителя-минус трёх перед дифференциалом. Значит, перед знаком интеграла ставим -1/3 и получаем:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 10:

Пример 11. Найти подведением под знак дифференциала интеграл:

Решение. Замечаем, что замена переменной в знаменателе выгодно оборачивается получением табличного интеграла 21 (с арктангенсом). Но в знаменателе у нас икс не в квадрате, а в шестой степени. Представляем икс в шестой степени как , а интеграл преобразуется к . Именно икс в кубе из второго слагаемого в знаменателе представляет собой внутреннюю функцию, которую внесём под знак дифференциала. Получаем

Полученное нужно перенести в подынтегральное выражение. В нём нет множителя-тройки перед дифференциалом. Значит, перед знаком интеграла ставим 1/3 и получаем:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 21:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Пример 12. Найти подведением под знак дифференциала интеграл:

Решение. Смотрим в числитель. Там косинус от трёх икс. Смотрим в знаменатель. Там присутствует синус также от трёх икс. Значит, всё выражение в знаменателе можем как внутреннюю функцию внести под знак дифференциала. Получаем

Полученное нужно перенести в подынтегральное выражение. В нём нет множителя-минус девяти перед дифференциалом. Значит, перед знаком интеграла ставим -1/9 и получаем:

Далее для получения простой функции обозначаем и и окончательно решаем как табличный интеграл 10:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *