Как по графику определить функцию
Перейти к содержимому

Как по графику определить функцию

  • автор:

Как по графику определить функцию

Одним из разделов школьной математики является изучение функциональных зависимостей или функций.

Напомним, что функцией математики называют зависимость величины от одной или нескольких других величин. При этом независимые переменные величины принято называть аргументами, а зависимые – функциями. При этом важно не забывать, что каждому значению аргумента (или аргументов) ставится в соответствие единственное значение зависимой переменной (функции). Наглядно функции изображают с помощью графика – специального набора точек на плоскости. Пусть имеется функция $$ y=f\left(x\right)$$ одной переменной $$ x$$. На плоскости введём декартову систему координат $$ xOy$$ и рассмотрим множество точек $$ G$$ с координатами $$ (x,f(x\left)\right)$$, где $$ x$$ принадлежит некоторому множеству $$ M$$, которое называется областью определения функции. А множество $$ G$$ называется графиком функции $$ y=f\left(x\right)$$ (рис. 1).

В школьном курсе математики вы изучали такие типы функций:

  1. Линейные функции $$ f\left(x\right)=kx+b$$.
  2. Квадратичные функции $$ f\left(x\right)=a^+bx+c$$, $$ a\ne 0$$.
  3. Степенные функции вида $$ f\left(x\right)=^$$ при натуральных $$ n$$.
  4. Степенные функции вида $$ f\left(x\right)=\sqrt[n]$$ при натуральных $$ n$$.
  5. Обратная пропорциональность $$ f\left(x\right)=>$$, $$ k\ne 0$$.

График линейной функции можно построить по двум точкам, поскольку это прямая линия. Однако стоит заметить, что не всякая прямая будет графиком линейной функции. Если взять вертикальную прямую $$ x=a$$, то такая линия не может быть графиком никакой функции (рис. 2).

Действительно, здесь одному значению переменной $$ x$$ ставится в соответствие несколько значений переменной $$ y$$. Итак,

прямая на плоскости $$ xOy$$ – график некоторой линейной функции тогда и только тогда, когда она не вертикальна.

Напомним геометрический смысл коэффициентов $$ k$$ и $$ b$$ в уравнении прямой $$ y=kx+b:$$ $$ k=\mathrm \alpha $$ – тангенс угла наклона прямой к оси $$ Ox$$, $$ b$$ – ордината точки пересечения прямой с осью $$ Oy$$. Поэтому две невертикальные прямые $$ y=_x+_$$ и $$ y=_x+_$$:

  • параллельны ⟺ $$ _=_$$ и $$ _\ne _$$;
  • совпадают ⟺ $$ _=_$$ и $$ _=_$$;
  • перпендикулярны ⟺ $$ __=-1$$.

Условие перпендикулярности прямых несложно пояснить. Рассмотрим пару прямых, параллельных данным и проходящих через начало координат (см. рис. 3).

Теперь напомним основные сведения о функциях вида $$ f\left(x\right)=a^+bx+c$$.

Сразу отметим, что такая функция квадратична только при $$ a\ne 0$$. В случае же $$ a=0$$ эта функция квадратичной уже не будет. Если в задаче возможна такая ситуация, то случай $$ a=0$$ обязательно нуждается в отдельном рассмотрении. Нужно всегда обращать на это внимание!

Будем считать, что $$ a\ne 0$$. Тогда графиком функции $$ y=f\left(x\right)$$ будет парабола. Такие графики принято строить схематично, учитывая следующее:

  • знак числа `a`: при $$ a>0$$ ветви параболы направлены вверх, при $$ a Теперь поговорим о графиках степенной функции. Легко убедиться, что график функции

$$ f\left(x\right)=^$$ ($$ n\in N$$) при $$ x\ge 0$$

выглядит так, как показано на рис. 4. Для чётных $$ n$$, очевидно, верно $$ f(-x)=f\left(x\right)$$, а для нечетных $$ n$$ верно $$ f(-x)=-f\left(x\right)$$ для всякого $$ x$$. Поэтому в зависимости от чётности $$ n$$ графики функции $$ f\left(x\right)=^$$ имеют такой вид (рис. 5 и 6).

Напомним, что функция, область допустимых значений которой симметрична относительно начала координат, называется чётной, если справедливо равенство $$ f(-x)=f\left(x\right)$$ и нечётной, если $$ f(-x)=-f\left(x\right)$$. Наример, нетрудно проверить, что функция

В случае нечётного $$ n$$ график симметричен относительно начала координат. Такие функции называют нечётными (рис. 5). Если же $$ n$$ четно, то график симметричен относительно оси ординат. Такие функции называют чётными (рис. 6).

Для построения графика $$ f\left(x\right)=\sqrt[n]$$ нужно записать уравнение $$ y=\sqrt[n]$$ или $$ x=^$$. Это означает, что график имеет вид линии $$ y=^$$, но при этом $$ x$$ и $$ y$$ меняются местами. Для чётных $$ n$$ при этом еще нужно учесть ОДЗ $$ x\ge 0$$. Поэтому график функции $$ f\left(x\right)=\sqrt[n]$$ имеет следующий вид в зависимости от чётности натурального числа $$ n$$ (рис. 7, 8):

Рассмотрим теперь функции вида $$ f\left(x\right)=\frac$$.

Поскольку функция $$ f$$ нечётна, то график должен быть симметричным относительно начала координат. Схематический вид графика этой функции показан на рисунке 9.

Покажем, как меняется график функции $$ f\left(x\right)=>$$ при изменении параметра $$ k$$. Если $$ \left|_\right|>\left|_\right|$$, то линия $$ f\left(x\right)=<\displaystyle \frac<_>>$$ более удалена от осей координат, чем $$ f\left(x\right)=<\displaystyle \frac<_>>$$. Схематично это изображено на рис. 11, 12.

Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках, и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции. Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции, это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы.

Исследование функции я привык разбивать на 5-6 пунктов:

1) Область определения, непрерывность, четность/нечётность, периодичность функции.

2) Асимптоты графика функции.

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Итак, вооружившись общей схемой исследования, где рассмотрена структура и техника выполнения задачи, переходим к изучению стратегии и тактики действий. Успешно прошедшим курс обучения откроется тайна числа 69 😉 С нетерпением скрипим колёсиком мыши =)

Исследовать функцию и по результатам исследования построить график.

Решение:
1) Функция определена и непрерывна на всей числовой прямой: . Это очень хорошо, отпадают вертикальные асимптоты.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание: напоминаю, что более высокого порядка роста, чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях.

Таким образом, функция не ограничена сверху и не ограничена снизу. Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции: – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Первый пункт исследования даёт самые общие представления о графике

Каждый этап задания приносит новую информацию о графике функции, поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано, но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы.

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:

Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Интервалы знакопостоянства уточняют график

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов.

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:

Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Исследование функции с помощью 1-ой производной серьёзно детализировало шаблон

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :

График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Кубическая функция, построенная с помощью полного исследования

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение: первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения: .

, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу.

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Информация об асимптотах и черновой чертёж оказывают серьёзную помощь в дальнейшем исследовании

Вывод № 1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод № 2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод № 3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу № 1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

4) Возрастание, убывание, экстремумы функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом № 2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

5) Выпуклость, вогнутость, перегибы графика.

, значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом № 3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:

График дробно-рациональной функции, построенный с помощью полного исследования

В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Провести полное исследование функции и построить её график.

Решение: понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

, значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя:

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

! Настоятельно рекомендую оформлять черновой шаблон графика
по ходу исследования!

4) Возрастание, убывание, экстремумы функции.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:

Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :

График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

6) Дополнительные точки целесообразно рассчитать только для правой полуплоскости:

График нечётной функции, построенный на основании исследования

Выполним чертёж:

Такой вот симпатяга….

Изначально было запланировано 5 примеров, и если честно, я ожидал, что статья получится заметно больше по объему. Конечно, хочется исследовать ещё одну функцию, но с другой стороны – нельзя объять необъятное, поэтому сегодня воздержимся от логарифмов. Самое важное – усвоить методы, приёмы и хитрости исследования, которые мы только что разобрали.

Желающие могут пройти на страницу готовых задач по высшей математике и закачать архив, который содержит 69 исследований. Выбирайте любую функцию и тренируйтесь! А кто знает…, может встретите ту единственную, которую так давно искали =)

Решения и ответы:

Пример 2: Решение: проведём исследование функции:
1) Функция определена и непрерывна на всей числовой прямой, .

, значит, данная функция не является четной или нечетной.
Функция непериодическая.

2) Асимптоты графика, поведение функции на бесконечности.
Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.
, значит, наклонные асимптоты также отсутствуют.
, функция не ограничена снизу.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.
График проходит через начало координат.
С осью

Определим знаки :

, если ,
, если .

4) Возрастание, убывание, экстремумы функции.

– критические точки.
Определим знаки :

возрастает на и убывает на .
В точке функция достигает максимума:

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.
Определим знаки :

График функции является выпуклым на и вогнутым на .
В обеих критических точках существуют перегибы графика.

6) Найдем дополнительные точки:

Выполним чертёж:
График многочлена 4-ой степени, построенный с помощью полного исследования функции методами дифференциального исчисления

Пример 4: Решение: проведем исследование функции:

1) Функция определена и непрерывна на всей числовой прямой, .

, значит, данная функция является четной, ее график симметричен относительно оси ординат.
Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.
Так как функция непрерывна на всей числовой прямой, то вертикальные асимптоты отсутствуют.

Прямая является горизонтальной асимптотой для графика при .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.
График функции проходит через начало координат.
на всей области определения.

4) Возрастание, убывание, экстремумы функции.

– критическая точка.
Определим знаки :

возрастает на и убывает на .
В точке функция достигает минимума: .

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.
Определим знаки :

График является выпуклым на и вогнутым на .
В обеих критических точках существуют перегибы графика: .

6) Найдем дополнительные точки и выполним чертёж:

Исследование чётной функции и её график

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Как найти функцию по графику?!

Можно по графику определить координаты некоторых точек, через которые проходит функция, предположить вид уравнения функции (у=kx+b, e=ax^2+bx+c, y=a*ln(n*x). ), затем методом наименьших квадратов найти уравнение функции.

После нахождения координат, их можно записать в Excel, построить график «Точечный», выбрать пункт меню Диаграмма, указать показывать линию тренда на диаграмме, программа сама запишет уравнение функции.

Остальные ответы

Основные признаки и характеристики графиков функций на экзамене по математике — как распознать?

Математика – это наука, кажущаяся непонятной многим школьникам. Однако она также является одной из самых полезных и прикладных дисциплин, которая применяется в различных областях жизни. Например, она позволяет нам понять и описать изменения, происходящие в различных процессах, используя графики функций.

Графики функций – это визуальное представление математических отношений между различными переменными. С их помощью мы можем предсказывать, как будет меняться одна переменная при изменении другой, а также устанавливать различные зависимости между переменными. Поэтому понимание и распознавание графиков функций является важным навыком, особенно для решения задач на ОГЭ по математике.

Распознавание графиков функций на экзамене по математике: основные признаки и характеристики

Распознавание графиков функций требует внимательности и наблюдательности, поскольку каждая функция имеет свои особенности и характеристики. Одной из таких характеристик является степень функции. Степень функции определяет, как ведет себя график на разных участках оси абсцисс.

Степень функции и ее поведение

Степень функции и ее поведение

В зависимости от значения показателя степени функции, график может иметь различные формы и характеристики. Например, функции с показателем степени 1 описывают линейную зависимость, а их графики представляют собой прямые линии. Функции с показателем степени 2 описывают квадратичную зависимость, и их графики представляют собой параболы.

Но не всегда степень функции определяет ее поведение однозначно. Различные функции с одинаковым показателем степени могут иметь разные формы графиков и свойства. Например, парабола ветвистая вниз и парабола ветвистая вверх обе имеют показатель степени 2, но их графики выглядят совершенно по-разному. Поэтому при анализе графика функции необходимо учитывать не только степень, но и другие характеристики, такие как коэффициенты при степенях, наличие точек перегиба или асимптот.

Асимптоты и их роль в распознавании графиков

Асимптоты и их роль в распознавании графиков

Зачем же нам знать об асимптотах и их роли? Ответ прост — они позволяют нам определить поведение графика функции в бесконечности. Горизонтальная асимптота указывает на то, что значение функции стремится к определенному числу при приближении аргумента к бесконечности. Вертикальная асимптота, например, может говорить о том, что функция имеет точки разрыва или уходит на бесконечность в определенных точках. А наклонная асимптота свидетельствует о том, что график функции стремится к некоторому наклону при приближении к бесконечности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *