Пнп и нпн транзисторы в чем разница
Перейти к содержимому

Пнп и нпн транзисторы в чем разница

  • автор:

Транзисторы: ​принцип работы, схема включения, чем отличаются ​биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

TO-92 — компактный, для небольших нагрузок
TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его

Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

$ R = \frac<U - U_d></p>
<p> = \frac <5\unit- 0.3\unit><0.04\unit<А>> \approx 118\unit $» /></p>
<p>здесь <em>U<sub>d</sub></em> — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.</p>
<p>Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора <em>h<sub>fe</sub></em> = 100, тогда нам будет достаточно управляющего тока в 1 мА</p>
<p><img decoding=

= \frac <5\unit- 0.3\unit><0.001\unit<А>> = 4700\unit = 4.7\unit $» />

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Если не указано иное, содержимое этой вики предоставляется на условиях следующей лицензии: CC Attribution-Noncommercial-Share Alike 4.0 International

Производные работы должны содержать ссылку на http://wiki.amperka.ru, как на первоисточник, непосредственно перед содержимым работы.
Вики работает на суперском движке DokuWiki.

схемотехника/транзисторы.txt · Последние изменения: 2022/06/07 10:11 — mik

Инструменты страницы

  • Показать исходный текст
  • История страницы
  • Ссылки сюда
  • Наверх

SamPawno

В чем разница между NPN и PNP транзисторами?

1 сообщение • Страница 1 из 1

Arduino Автор темы, Сержант Arduino Автор темы, Сержант Сообщения: 64 Зарегистрирован: 19 апреля 2017 С нами: 6 лет 9 месяцев

#1 Arduino » 18 июня 2020, 22:46

Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP . Транзистор имеет три вывода, известные как эмиттер ( Э ), база ( Б ) и коллектор ( К ). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Изображение
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Изображение
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Изображение
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:

    Отсечка : работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то есть «контакт разомкнут».
    Активный режим : транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
    Насыщение : работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
    Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.

В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора ( К ) к эмиттеру ( Э ):
Изображение
А в PNP ток протекает от эмиттера к коллектору:
Изображение
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.

Изображение

PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ . Ниже приводится краткое описание режимов работы в зависимости от их напряжения:

Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.

Разница npn и pnp только в направлении тока(э-к и наоборот)?

Добрый день, подскажите, разница pnp и npn транзисторов только в том, что
у npn транзистора ток течет от коллектора на эмиттер, а
у pnp наоборот, от эмиттера к коллектору?
(не считаю открытия базы плюсовой или минусовой направляностью к ней)
92889633d57a4107a7fa3fa5eba34571.JPG 0813c651f234483f867b558e694be879.JPG

  • Вопрос задан более трёх лет назад
  • 18706 просмотров

1 комментарий

Оценить 1 комментарий

Borizzz @Borizzz Автор вопроса
Решения вопроса 2

NeiroNx

Программист
да — только в этом.
Ответ написан более трёх лет назад
Нравится 3 5 комментариев

Так-то «идентичные» pnp и npn еще немного отличаются и по каким-то характеристикам, но в среднем на это не обращают внимания.

NeiroNx

для этого придумали комплементарные пары — у них характеристики максимально близкие
Borizzz @Borizzz Автор вопроса

pfg21: подскажите ещё, пожалуйста
а транзисторы, которые стоять в процессорах, они точно такие же, только маленькие?
и где так принципиально важно использование pnp или npn транзисторов, а где других, если разница только в месте входа-выхода тока?

NeiroNx

в процессорах КМОП технология, так как переходные процессы в них быстрее. Для транзисторов есть схемы включения, каждая схема включения обладает своими параметрами и в зависимости от них применяется в том или ином случае. Поищите литературу по устройтву и типам полупроводниковых элементов и основам схемотехники.

В современных схемах в большинстве своем используют МОП-транзисторы (в простонародье полевые :). у них тоже есть два вида: N- и P-канальные, с симетричными характеристиками.
У них чуть более лучшие характеристики, плюс можно «сдвинуть» характеристику элемента в сторону, т.е они более разнообразные.
Не понял вопроса, но принципе да — отличия pnp и npn только в направлениях проходящих токов и смысл выводов и функциональные параметры останутся теми же самым. приведенный рисунок это качество и описывает.

roach1967

В принципе разница только в направлении тока, но есть нюансы. Например в NPN-транзисторе носителем тока являются электроны, а в PNP-транзисторе — дырки (вакансии), которые менее мобильны. Так-что в общем случае NPN-транзисторы более высокочастотны.
Немножко о транзисторах.

Ответ написан более трёх лет назад
Нравится 2 3 комментария
Borizzz @Borizzz Автор вопроса

а для чего тогда pnp транзисторы применяют?
в мк получается все npn транзисторы, только сила тока на них подается разная?

roach1967

Как наиболее распространённый пример применения PNP и NPN транзисторов — комплементарная пара в различных усилителях сигналов.
В МК (да и в любой современной цифровой схемотехнике) уже давно не применяют биполярные транзисторы: их заменили на полевые (CMOS). Немаловажную роль в этом играет то, что на биполярном транзисторе, в открытом состоянии, всегда есть падение напряжения (~0,7в. для кремниевых и ~0,4в. для германиевых). В то-же самое время у полевых транзисторов очень маленькое сопротивление открытого канал — может достигать единиц милиома и даже меньше. И для поддержания открытого состояния практически не тратиться энергия. Т.е. практически идеальный переключатель. Но есть и минус полевых транзисторов — их вход представляет собой конденсатор.
Для увеличения мощности выходов МК используют мощные полевые транзисторы. Но не напрямую, а через специальную схему — драйвер, выходной каскад которого как раз и представляет собой каскад биполярных комплементарных транзисторов для успешного перезаряда входной ёмкости КМОП-транзистора.
Биполярные транзисторы успешно применяются в аналоговой технике, особенно в СВЧ. Хотя с развитием технологий и здесь успешно заменяются на полевые.
Единственное направление, имхо, где лидируют биполярные транзисторы — высоковольтные приборы.
Здесь вроде-как разжевано.

Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия

Среди всех используемых в промышленности датчиков до сих пор превалируют дискретные, т. е. имеющие два состояния выходного сигнала – включен/выключен (иначе – 0 либо 1). В основном подобные датчики используются для определения некоторых конечных положений, и принцип действия может быть любым – индуктивным, оптическим, емкостным и так далее.

Все подобные датчики объединяет одна характеристика – схемотехника выхода. Основных вариантов здесь два:

— релейный выход основывается, очевидно, на использовании реле. Схема питания датчика при этом гальванически развязана с выходом, что даёт возможность использовать такие датчики для коммутации высокого напряжения.

— транзисторный выход использует PNP либо NPN транзистор на выходе и подключает соответственно плюсовой либо минусовой провод.

Немного теории. Транзисторы PNP и NPN относятся к категории биполярных и имеют три вывода: коллектор, база и эмиттер. Сам транзистор состоит из трёх частей, называемых областями, разделенных двумя p-n переходами. Соответственно, транзистор PNP имеет две области P и одну область N, а NPN, соответственно, две N и одну P. Направление протекания тока также разное:

— для PNP при подаче напряжения на эмиттер ток протекает от эмиттера к коллектору;

— для NPN подача напряжения на коллектор вызывает протекание тока от коллектора к эмиттеру.

Это обуславливает необходимость подключения питания с прямой полярностью относительно общих клемм для транзисторов NPN, и обратной – для PNP.

Любой биполярный транзистор работает по принципу управления током базы для регулирования тока между эмиттером и коллектором. Единственное различие в принципе работы транзисторов PNP и NPN заключается в полярности напряжений, подаваемых на эмиттер, базу и коллектор. В зависимости от реализации смещений p-n переходов возможны различные режимы работы транзисторов, но в общем случае в датчиках используются два:

— насыщение: прямое прохождение тока между эмиттером и коллектором (замкнутый контакт)

— отсечка: отсутствие тока между эмиттером и коллектором (разомкнутый контакт)

Рассмотрим подробнее подключение и особенности применения, например, индуктивных датчиков с транзисторным выходом. Отличием является коммутация разных проводов цепи питания: PNP соединяет плюс источника питания, NPN – минус. Ниже наглядно показаны различия в подключении; справа изображён датчик с выходом PNP, слева – NPN.

Принципиальное отличие логики PNP от NPN

Отличие логики датчиков PNP от NPN

Чаще применяется вариант с выходом на основе транзистора PNP, поскольку большее распространение получила схемотехника с общим минусовым проводом источника питания. Выходное напряжение зависит от напряжения питания датчика и обычно находится в узком диапазоне, например, 20…28 В.

Выбор датчика по типу используемого транзистора обуславливается в первую очередь схемотехникой используемого контроллера или иного оборудования, к которому предполагается подключать датчик. Обычно в документации на контроллеры и устройства коммутации указывается, какой транзисторный выход они позволяют использовать.

Теперь о совместимости. Вообще, существует четыре основных разновидности выхода датчиков:

Помимо типа используемого транзистора, различие также заключается в исходном состоянии выхода – он может быть в нормальном (если датчик не активирован) состоянии либо разомкнутым (открытым), либо замкнутым (закрытым). Отсюда обозначения NO (НО) – normally open (нормально открытый) и normally closed (нормально закрытый).

Что делать, если требуется заменить один датчик на другой, но нет возможности установить аналог с идентичной логикой и схемотехникой выхода? В случае, если меняется только исходное состояние выхода (НО на НЗ и наоборот), путей решения может быть несколько:

— внесение изменений в конструкцию, инициирующую датчик

— внесение изменений в программу (смена алгоритма)

— переключение выходной функции датчика (при наличии такой возможности)

Замена же оптического датчика с изменением типа используемого транзистора представляет собой проблему большую, нежели просто поменять алгоритм или сместить какой-то элемент конструкции. Изменение схемотехники датчика влечет за собой также необходимость внесения существенных изменений в схему его подключения. Конечно, это не всегда допустимо, однако в ряде случаев это единственный выход.

Замена датчика PNP на NPN

Рассмотрим схему, представленную выше слева (для примера взят датчик с транзистором PNP). В случае неактивного датчика с нормально открытым выходом ток не протекает через его выходные контакты; для нормально закрытого, соответственно, ситуация обратная. Благодаря протекающему току на нагрузке создаётся падение напряжения.

Наряду с основной (внешней) нагрузкой датчика, которой может являться вход контроллера, в нём может присутствовать также внутренняя нагрузка, однако она не гарантирует, что датчик будет работать стабильно. Если внутреннего сопротивления нагрузки у датчика нет, такая схема называется схемой с открытым коллектором – она может функционировать исключительно при наличии внешней нагрузки.

Вернемся к схеме. Активация датчика с выходом PNP обеспечивает подачу напряжения +V через транзистор на вход контроллера. Реализация этой схемы с датчиком, имеющим выход NPN, требует добавления в схему дополнительного резистора (номинал которого обычно подбирается в диапазоне 4.9-10 кОм) для обеспечения функционирования транзистора. В этом случае при неактивном датчике напряжение поступает через добавленный резистор на вход контроллера, что делает схему, по сути, нормально закрытой. Активация датчика обеспечивает отсутствие сигнала на входе контроллера, поскольку транзистор NPN, через который проходит почти весь ток дополнительного резистора, шунтирует вход контроллера.

Таким образом, подобный подход обеспечивает возможность замены датчика PNP на NPN при условии, что перефазировка датчика не является проблемой. Это допустимо, когда датчик исполняет роль счетчика импульсов – контроль числа оборотов, количества деталей и т. д.

Если подобное изменение не является приемлемым, и требуется сохранить в том числе логику работы системы, можно пойти по более сложному пути.

Схемы подключения датчиков PNP к устройству со входом NPN и наоборот

Суть заключается в добавлении в схему подключения дополнительного биполярного транзистора, тип которого выбирается исходя из типа входа прибора, к которому подключается датчик, а также двух дополнительных сопротивлений нагрузки. Если используется прибор с входом NPN, то и дополнительный транзистор требуется такой же. Активация датчика инициирует переключение внешнего транзистора, который уже подаёт напряжение на вход прибора. Данная схема, в отличие от рассмотренной ранее, сохраняет логику работы системы, однако более сложна в сборке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *