Как посмотреть типы данных в pandas
Перейти к содержимому

Как посмотреть типы данных в pandas

  • автор:

Pandas: как проверить dtype для всех столбцов в DataFrame

Вы можете использовать следующие методы для проверки типа данных ( dtype ) для столбцов в кадре данных pandas:

Способ 1: проверить dtype одного столбца

df.column_name.dtype 

Способ 2: проверить dtype всех столбцов

df.dtypes 

Способ 3: проверьте, какие столбцы имеют определенный тип dtype

df.dtypes [df.dtypes == 'int64'] 

В следующих примерах показано, как использовать каждый метод со следующими пандами DataFrame:

import pandas as pd #create DataFrame df = pd.DataFrame() #view DataFrame print(df) team points assists all_star 0 A 18 5 True 1 B 22 7 False 2 C 19 7 False 3 D 14 9 True 4 E 14 12 True 5 F 11 9 True 

Пример 1: проверка dtype одного столбца

Мы можем использовать следующий синтаксис, чтобы проверить тип данных только столбца точек в DataFrame:

#check dtype of points column df.points.dtype dtype('int64') 

Из вывода мы видим, что столбец точек имеет целочисленный тип данных.

Пример 2: Проверка dtype всех столбцов

Мы можем использовать следующий синтаксис для проверки типа данных всех столбцов в DataFrame:

#check dtype of all columns df.dtypes team object points int64 assists int64 all_star bool dtype: object 

Из вывода мы видим:

  • Столбец команды : объект (это то же самое, что и строка)
  • столбец очков : целое число
  • столбец помогает : целое число
  • столбец all_star : логическое значение

Используя эту одну строку кода, мы можем увидеть тип данных каждого столбца в DataFrame.

Пример 3: проверьте, какие столбцы имеют определенный тип dtype

Мы можем использовать следующий синтаксис, чтобы проверить, какие столбцы в DataFrame имеют тип данных int64:

#show all columns that have a class of int64 df.dtypes [df.dtypes == 'int64'] points int64 assists int64 dtype: object 

Из вывода мы видим, что столбцы очков и помощи имеют тип данных int64.

Мы можем использовать аналогичный синтаксис, чтобы проверить, какие столбцы имеют другие типы данных.

Например, мы можем использовать следующий синтаксис, чтобы проверить, какие столбцы в DataFrame имеют тип данных объекта:

#show all columns that have a class of object (i.e. string) df.dtypes [df.dtypes == 'O'] team object dtype: object 

Мы видим, что только столбец team имеет тип данных «O», что означает объект.

Дополнительные ресурсы

В следующих руководствах объясняется, как выполнять другие распространенные операции с пандами DataFrames:

10 приемов Python Pandas, которые сделают вашу работу более эффективной

Pandas — это широко используемый пакет Python для структурированных данных. Существует много хороших учебных пособий на данную тематику, но здесь мы бы хотели раскрыть несколько интересных приемов, которые, вероятно, еще пока неизвестны читателю, но могут оказаться крайне полезными.

read_csv

Все знают эту команду. Но если данные, которые вы пытаетесь прочитать, слишком большие, попробуйте добавить команду nrows = 5 , чтобы прочитать сначала небольшую часть данных перед загрузкой всей таблицы. В этом случае вам удастся избежать ситуации выбора неверного разделителя (не всегда в данных есть разделение в виде запятой).

(Или вы можете использовать команду ‘head’ в linux для проверки первых 5 строк в любом текстовом файле: head -c 5 data.txt )

Затем вы можете извлечь список столбцов, используя df.columns.tolist() , а затем добавить команду usecols = [‘c1’, ‘c2’,…], чтобы извлечь только нужные вам столбцы. Кроме того, если вы знаете типы данных определенных столбцов, вы можете добавить dtype = для более быстрой загрузки. Еще одно преимущество этой команды в том, что если у вас есть столбец, который содержит как строки, так и числа, рекомендуется объявить его тип строковым, чтобы не возникало ошибок при попытке объединить таблицы, используя этот столбец в качестве ключа.

select_dtypes

Если предварительная обработка данных должна выполняться в Python, то эта команда сэкономит ваше время. После чтения из таблицы типами данных по умолчанию для каждого столбца могут быть bool, int64, float64, object, category, timedelta64 или datetime64. Вы можете сначала проверить распределение с помощью

df.dtypes.value_counts()

чтобы узнать все возможные типы данных вашего фрейма, затем используйте

df.select_dtypes(include=[‘float64’, ‘int64’])

чтобы выбрать субфрейм только с числовыми характеристиками.

сopy

Это важная команда. Если вы сделаете:

import pandas as pd
df1 = pd.DataFrame(< ‘a’:[0,0,0], ‘b’: [1,1,1]>)
df2 = df1
df2[‘a’] = df2[‘a’] + 1
df1.head()

Вы обнаружите, что df1 изменен. Это потому, что df2 = df1 не делает копию df1 и присваивает ее df2, а устанавливает указатель, указывающий на df1. Таким образом, любые изменения в df2 приведут к изменениям в df1. Чтобы это исправить, вы можете сделать либо:

df2 = df1.copy ()
from copy import deepcopy
df2 = deepcopy(df1)

map

Это классная команда для простого преобразования данных. Сначала вы определяете словарь, в котором «ключами» являются старые значения, а «значениями» являются новые значения.

level_map = 
df[‘c_level’] = df[‘c’].map(level_map)

Например: True, False до 1, 0 (для моделирования); определение уровней; определяемые пользователем лексические кодировки.

apply or not apply?

Если нужно создать новый столбец с несколькими другими столбцами в качестве входных данных, функция apply была бы весьма полезна.

def rule(x, y): 
if x == ‘high’ and y > 10:
return 1
else:
return 0

df = pd.DataFrame(< 'c1':[ 'high' ,'high', 'low', 'low'], 'c2': [0, 23, 17, 4]>)
df['new'] = df.apply(lambda x: rule(x['c1'], x['c2']), axis = 1)
df.head()

В приведенных выше кодах мы определяем функцию с двумя входными переменными и используем функцию apply, чтобы применить ее к столбцам ‘c1’ и ‘c2’.

но проблема «apply» заключается в том, что иногда она занимает очень много времени.

Скажем, если вы хотите рассчитать максимум из двух столбцов «c1» и «c2», конечно, вы можете применить данную команду

df[‘maximum’] = df.apply(lambda x: max(x[‘c1’], x[‘c2’]), axis = 1)

но это будет медленнее, нежели:

df[‘maximum’] = df[[‘c1’,’c2']].max(axis =1)

Вывод: не используйте команду apply, если вы можете выполнить ту же работу используя другие функции (они часто быстрее). Например, если вы хотите округлить столбец ‘c’ до целых чисел, выполните округление (df [‘c’], 0) вместо использования функции apply.

value counts

Это команда для проверки распределения значений. Например, если вы хотите проверить возможные значения и частоту для каждого отдельного значения в столбце «c», вы можете применить

df[‘c’].value_counts()

Есть несколько полезных приемов / функций:
A. normalize = True : если вы хотите проверить частоту вместо подсчетов.
B. dropna = False : если вы хотите включить пропущенные значения в статистику.
C. sort = False : показать статистику, отсортированную по значениям, а не по количеству.

D. df[‘c].value_counts().reset_index().: если вы хотите преобразовать таблицу статистики в датафрейм Pandas и управлять ими.

количество пропущенных значений

При построении моделей может потребоваться исключить строку со слишком большим количеством пропущенных значений / строки со всеми пропущенными значениями. Вы можете использовать .isnull () и .sum () для подсчета количества пропущенных значений в указанных столбцах.

import pandas as pd
import numpy as np

df = pd.DataFrame(< ‘id’: [1,2,3], ‘c1’:[0,0,np.nan], ‘c2’: [np.nan,1,1]>)
df = df[[‘id’, ‘c1’, ‘c2’]]
df[‘num_nulls’] = df[[‘c1’, ‘c2’]].isnull().sum(axis=1)
df.head()

выбрать строки с конкретными идентификаторами

В SQL мы можем сделать это, используя SELECT * FROM… WHERE ID в («A001», «C022»,…), чтобы получить записи с конкретными идентификаторами. Если вы хотите сделать то же самое с pandas, вы можете использовать:

df_filter = df ['ID']. isin (['A001', 'C022', . ]) 
df [df_filter]

Percentile groups

Допустим, у вас есть столбец с числовыми значениями, и вы хотите классифицировать значения в этом столбце по группам, скажем, топ 5% в группу 1, 5–20% в группу 2, 20–50% в группу 3, нижние 50% в группу 4. Конечно, вы можете сделать это с помощью pandas.cut, но мы бы хотели представить другую функцию:

import numpy as np
cut_points = [np.percentile(df[‘c’], i) for i in [50, 80, 95]]
df[‘group’] = 1
for i in range(3):
df[‘group’] = df[‘group’] + (df[‘c’] < cut_points[i])
# or Которая быстро запускается (не применяется функция apply).

to_csv

Опять-таки, это команда, которую используют все. Отметим пару полезных приемов. Первый:
print(df[:5].to_csv())

Вы можете использовать эту команду, чтобы напечатать первые пять строк того, что будет записано непосредственно в файл.

Еще один прием касается смешанных вместе целых чисел и пропущенных значений. Если столбец содержит как пропущенные значения, так и целые числа, тип данных по-прежнему будет float, а не int. Когда вы экспортируете таблицу, вы можете добавить float_format = '%. 0f', чтобы округлить все числа типа float до целых чисел. Используйте этот прием, если вам нужны только целочисленные выходные данные для всех столбцов – так вы избавитесь от всех назойливых нулей ‘.0’ .

Аналитикам: большая шпаргалка по Pandas

Привет. Я задумывал эту заметку для студентов курса Digital Rockstar, на котором мы учим маркетологов автоматизировать свою работу с помощью программирования, но решил поделиться шпаргалкой по Pandas со всеми. Я ожидаю, что читатель умеет писать код на Python хотя бы на минимальном уровне, знает, что такое списки, словари, циклы и функции.

  1. Что такое Pandas и зачем он нужен
  2. Структуры данных: серии и датафреймы
  3. Создаем датафреймы и загружаем в них данные
  4. Исследуем загруженные данные
  5. Получаем данные из датафреймов
  6. Считаем производные метрики
  7. Объединяем несколько датафреймов
  8. Решаем задачу

Что такое Pandas и зачем он нужен

Pandas — это библиотека для работы с данными на Python. Она упрощает жизнь аналитикам: где раньше использовалось 10 строк кода теперь хватит одной.

Например, чтобы прочитать данные из csv, в стандартном Python надо сначала решить, как хранить данные, затем открыть файл, прочитать его построчно, отделить значения друг от друга и очистить данные от специальных символов.

> with open('file.csv') as f: . content = f.readlines() . content = [x.split(',').replace('\n','') for x in content]

В Pandas всё проще. Во-первых, не нужно думать, как будут храниться данные — они лежат в датафрейме. Во-вторых, достаточно написать одну команду:

> data = pd.read_csv('file.csv')

Pandas добавляет в Python новые структуры данных — серии и датафреймы. Расскажу, что это такое.

Структуры данных: серии и датафреймы

Серии — одномерные массивы данных. Они очень похожи на списки, но отличаются по поведению — например, операции применяются к списку целиком, а в сериях — поэлементно.

То есть, если список умножить на 2, получите тот же список, повторенный 2 раза.

> vector = [1, 2, 3] > vector * 2 [1, 2, 3, 1, 2, 3]

А если умножить серию, ее длина не изменится, а вот элементы удвоятся.

> import pandas as pd > series = pd.Series([1, 2, 3]) > series * 2 0 2 1 4 2 6 dtype: int64

Обратите внимание на первый столбик вывода. Это индекс, в котором хранятся адреса каждого элемента серии. Каждый элемент потом можно получать, обратившись по нужному адресу.

> series = pd.Series(['foo', 'bar']) > series[0] 'foo'

Еще одно отличие серий от списков — в качестве индексов можно использовать произвольные значения, это делает данные нагляднее. Представим, что мы анализируем помесячные продажи. Используем в качестве индексов названия месяцев, значениями будет выручка:

> months = ['jan', 'feb', 'mar', 'apr'] > sales = [100, 200, 300, 400] > data = pd.Series(data=sales, index=months) > data jan 100 feb 200 mar 300 apr 400 dtype: int64

Теперь можем получать значения каждого месяца:

> data['feb'] 200

Так как серии — одномерный массив данных, в них удобно хранить измерения по одному. На практике удобнее группировать данные вместе. Например, если мы анализируем помесячные продажи, полезно видеть не только выручку, но и количество проданных товаров, количество новых клиентов и средний чек. Для этого отлично подходят датафреймы.

Датафреймы — это таблицы. У их есть строки, колонки и ячейки.

Технически, колонки датафреймов — это серии. Поскольку в колонках обычно описывают одни и те же объекты, то все колонки делят один и тот же индекс:

> months = ['jan', 'feb', 'mar', 'apr'] > sales = < . 'revenue': [100, 200, 300, 400], . 'items_sold': [23, 43, 55, 65], . 'new_clients': [10, 20, 30, 40] . >> sales_df = pd.DataFrame(data=sales, index=months) > sales_df revenue items_sold new_clients jan 100 23 10 feb 200 43 20 mar 300 55 30 apr 400 65 40

Объясню, как создавать датафреймы и загружать в них данные.

Создаем датафреймы и загружаем данные

Бывает, что мы не знаем, что собой представляют данные, и не можем задать структуру заранее. Тогда удобно создать пустой датафрейм и позже наполнить его данными.

> df = pd.DataFrame()

А иногда данные уже есть, но хранятся в переменной из стандартного Python, например, в словаре. Чтобы получить датафрейм, эту переменную передаем в ту же команду:

> df = pd.DataFrame(data=sales, index=months))

Случается, что в некоторых записях не хватает данных. Например, посмотрите на список goods_sold — в нём продажи, разбитые по товарным категориям. За первый месяц мы продали машины, компьютеры и программное обеспечение. Во втором машин нет, зато появились велосипеды, а в третьем снова появились машины, но велосипеды исчезли:

> goods_sold = [ . , . , . . ]

Если загрузить данные в датафрейм, Pandas создаст колонки для всех товарных категорий и, где это возможно, заполнит их данными:

> pd.DataFrame(goods_sold) bicycles cars computers soft 0 NaN 1.0 10 3 1 1.0 NaN 4 5 2 NaN 2.0 6 3

Обратите внимание, продажи велосипедов в первом и третьем месяце равны NaN — расшифровывается как Not a Number. Так Pandas помечает отсутствующие значения.

Теперь разберем, как загружать данные из файлов. Чаще всего данные хранятся в экселевских таблицах или csv-, tsv- файлах.

Экселевские таблицы читаются с помощью команды pd.read_excel() . Параметрами нужно передать адрес файла на компьютере и название листа, который нужно прочитать. Команда работает как с xls, так и с xlsx:

> pd.read_excel('file.xlsx', sheet_name='Sheet1')

Файлы формата csv и tsv — это текстовые файлы, в которых данные отделены друг от друга запятыми или табуляцией:

# CSV month,customers,sales feb,10,200 # TSV month\tcustomers\tsales feb\t10\t200

Оба читаются с помощью команды .read_csv() , символ табуляции передается параметром sep (от англ. separator — разделитель):

> pd.read_csv('file.csv') > pd.read_csv('file.tsv', sep='\t')

При загрузке можно назначить столбец, который будет индексом. Представьте, что мы загружаем таблицу с заказами. У каждого заказа есть свой уникальный номер, Если назначим этот номер индексом, сможем выгружать данные командой df[order_id] . Иначе придется писать фильтр df[df[‘id’] == order_id ] .

О том, как получать данные из датафреймов, я расскажу в одном из следующих разделов. Чтобы назначить колонку индексом, добавим в команду read_csv() параметр index_col , равный названию нужной колонки:

> pd.read_csv('file.csv', index_col='id')

После загрузки данных в датафрейм, хорошо бы их исследовать — особенно, если они вам незнакомы.

Исследуем загруженные данные

Представим, что мы анализируем продажи американского интернет-магазина. У нас есть данные о заказах и клиентах. Загрузим файл с продажами интернет-магазина в переменную orders . Раз загружаем заказы, укажем, что колонка id пойдет в индекс:

> orders = pd.read_csv('orders.csv', index_col='id')

Расскажу о четырех атрибутах, которые есть у любого датафрейма: .shape , .columns , .index и .dtypes .

.shape показывает, сколько в датафрейме строк и колонок. Он возвращает пару значений (n_rows, n_columns) . Сначала идут строки, потом колонки.

> orders.shape (5009, 5)

В датафрейме 5009 строк и 5 колонок.

Окей, масштаб оценили. Теперь посмотрим, какая информация содержится в каждой колонке. С помощью .columns узнаем названия колонок:

> orders.columns Index(['order_date', 'ship_mode', 'customer_id', 'sales'], dtype='object')

Теперь видим, что в таблице есть дата заказа, метод доставки, номер клиента и выручка.

С помощью .dtypes узнаем типы данных, находящихся в каждой колонке и поймем, надо ли их обрабатывать. Бывает, что числа загружаются в виде текста. Если мы попробуем сложить две текстовых значения '1' + '1' , то получим не число 2, а строку '11' :

> orders.dtypes order_date object ship_mode object customer_id object sales float64 dtype: object

Тип object — это текст, float64 — это дробное число типа 3,14.

C помощью атрибута .index посмотрим, как называются строки:

> orders.index Int64Index([100006, 100090, 100293, 100328, 100363, 100391, 100678, 100706, 100762, 100860, . 167570, 167920, 168116, 168613, 168690, 168802, 169320, 169488, 169502, 169551], dtype='int64', name='id', length=5009)

Ожидаемо, в индексе датафрейма номера заказов: 100762, 100860 и так далее.

В колонке sales хранится стоимость каждого проданного товара. Чтобы узнать разброс значений, среднюю стоимость и медиану, используем метод .describe() :

> orders.describe() sales count 5009.0 mean 458.6 std 954.7 min 0.6 25% 37.6 50% 152.0 75% 512.1 max 23661.2

Наконец, чтобы посмотреть на несколько примеров записей датафрейма, используем команды .head() и .sample() . Первая возвращает 6 записей из начала датафрейма. Вторая — 6 случайных записей:

> orders.head() order_date ship_mode customer_id sales id 100006 2014-09-07 Standard DK-13375 377.970 100090 2014-07-08 Standard EB-13705 699.192 100293 2014-03-14 Standard NF-18475 91.056 100328 2014-01-28 Standard JC-15340 3.928 100363 2014-04-08 Standard JM-15655 21.376

Получив первое представление о датафреймах, теперь обсудим, как доставать из него данные.

Получаем данные из датафреймов

Данные из датафреймов можно получать по-разному: указав номера колонок и строк, использовав условные операторы или язык запросов. Расскажу подробнее о каждом способе.

Указываем нужные строки и колонки

Продолжаем анализировать продажи интернет-магазина, которые загрузили в предыдущем разделе. Допустим, я хочу вывести столбец sales . Для этого название столбца нужно заключить в квадратные скобки и поставить после них названия датафрейма: orders['sales'] :

> orders['sales'] id 100006 377.970 100090 699.192 100293 91.056 100328 3.928 100363 21.376 100391 14.620 100678 697.074 100706 129.440 . 

Обратите внимание, результат команды — новый датафрейм с таким же индексом.

Если нужно вывести несколько столбцов, в квадратные скобки нужно вставить список с их названиями: orders[['customer_id', 'sales']] . Будьте внимательны: квадратные скобки стали двойными. Первые — от датафрейма, вторые — от списка:

> orders[['customer_id', 'sales']] customer_id sales id 100006 DK-13375 377.970 100090 EB-13705 699.192 100293 NF-18475 91.056 100328 JC-15340 3.928 100363 JM-15655 21.376 100391 BW-11065 14.620 100363 KM-16720 697.074 100706 LE-16810 129.440 . 

Перейдем к строкам. Их можно фильтровать по индексу и по порядку. Например, мы хотим вывести только заказы 100363, 100391 и 100706, для этого есть команда .loc[] :

> show_these_orders = ['100363', '100363', '100706'] > orders.loc[show_these_orders] order_date ship_mode customer_id sales id 100363 2014-04-08 Standard JM-15655 21.376 100363 2014-04-08 Standard JM-15655 21.376 100706 2014-12-16 Second LE-16810 129.440

А в другой раз бывает нужно достать просто заказы с 1 по 3 по порядку, вне зависимости от их номеров в таблицемы. Тогда используют команду .iloc[] :

> show_these_orders = [1, 2, 3] > orders.iloc[show_these_orders] order_date ship_mode customer_id sales id 100090 2014-04-08 Standard JM-15655 21.376 100293 2014-04-08 Standard JM-15655 21.376 100328 2014-12-16 Second LE-16810 129.440

Можно фильтровать датафреймы по колонкам и столбцам одновременно:

> columns = ['customer_id', 'sales'] > rows = ['100363', '100363', '100706'] > orders.loc[rows][columns] customer_id sales id 100363 JM-15655 21.376 100363 JM-15655 21.376 100706 LE-16810 129.440 . 

Часто вы не знаете заранее номеров заказов, которые вам нужны. Например, если задача — получить заказы, стоимостью более 1000 рублей. Эту задачу удобно решать с помощью условных операторов.

Если — то. Условные операторы

Задача: нужно узнать, откуда приходят самые большие заказы. Начнем с того, что достанем все покупки стоимостью более 1000 долларов:

> filter_large = orders['sales'] > 1000 > orders.loc[filter_slarge] order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 102673 2014-11-01 Standard KH-16630 1044.440 102988 2014-04-05 Second GM-14695 4251.920 103100 2014-12-20 First AB-10105 1107.660 103310 2014-05-10 Standard GM-14680 1769.784 . 

Помните, в начале статьи я упоминал, что в сериях все операции применяются по-элементно? Так вот, операция orders['sales'] > 1000 идет по каждому элементу серии и, если условие выполняется, возвращает True . Если не выполняется — False . Получившуюся серию мы сохраняем в переменную filter_large .

Вторая команда фильтрует строки датафрейма с помощью серии. Если элемент filter_large равен True , заказ отобразится, если False — нет. Результат — датафрейм с заказами, стоимостью более 1000 долларов.

Интересно, сколько дорогих заказов было доставлено первым классом? Добавим в фильтр ещё одно условие:

> filter_large = df['sales'] > 1000 > filter_first_class = orders['ship_mode'] == 'First' > orders.loc[filter_large & filter_first_class] order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 . 

Логика не изменилась. В переменную filter_large сохранили серию, удовлетворяющую условию orders['sales'] > 1000 . В filter_first_class — серию, удовлетворяющую orders['ship_mode'] == 'First' .

Затем объединили обе серии с помощью логического ‘И’: filter_first_class & filter_first_class . Получили новую серию той же длины, в элементах которой True только у заказов, стоимостью больше 1000, доставленных первым классом. Таких условий может быть сколько угодно.

Язык запросов

Еще один способ решить предыдущую задачу — использовать язык запросов. Все условия пишем одной строкой 'sales > 1000 & ship_mode == 'First' и передаем ее в метод .query() . Запрос получается компактнее.

> orders.query('sales > 1000 & ship_mode == First') order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 . 

Отдельный кайф: значения для фильтров можно сохранить в переменной, а в запросе сослаться на нее с помощью символа @: sales > @sales_filter .

> sales_filter = 1000 > ship_mode_filter = 'First' > orders.query('sales > @sales_filter & ship_mode > @ship_mode_filter') order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 . 

Разобравшись, как получать куски данных из датафрейма, перейдем к тому, как считать агрегированные метрики: количество заказов, суммарную выручку, средний чек, конверсию.

Считаем производные метрики

Задача: посчитаем, сколько денег магазин заработал с помощью каждого класса доставки. Начнем с простого — просуммируем выручку со всех заказов. Для этого используем метод .sum() :

> orders['sales'].sum() 2297200.8603000003

Добавим класс доставки. Перед суммированием сгруппируем данные с помощью метода .groupby() :

> orders.groupby('ship_mode')['sales'].sum() ship_mode First 3.514284e+05 Same Day 1.283631e+05 Second 4.591936e+05 Standard 1.358216e+06

3.514284e+05 — научный формат вывода чисел. Означает 3.51 * 10 5 . Нам такая точность не нужна, поэтому можем сказать Pandas, чтобы округлял значения до сотых:

> pd.options.display.float_format = ''.format > orders.groupby('ship_mode')['sales'].sum() ship_mode First 351,428.4 Same Day 128,363.1 Second 459,193.6 Standard 1,358,215.7

Другое дело. Теперь видим сумму выручки по каждому классу доставки. По суммарной выручке неясно, становится лучше или хуже. Добавим разбивку по датам заказа:

> orders.groupby(['ship_mode', 'order_date'])['sales'].sum() ship_mode order_date First 2014-01-06 12.8 2014-01-11 9.9 2014-01-14 62.0 2014-01-15 149.9 2014-01-19 378.6 2014-01-26 152.6 . 

Видно, что выручка прыгает ото дня ко дню: иногда 10 долларов, а иногда 378. Интересно, это меняется количество заказов или средний чек? Добавим к выборке количество заказов. Для этого вместо .sum() используем метод .agg() , в который передадим список с названиями нужных функций.

> orders.groupby(['ship_mode', 'order_date'])['sales'].agg(['sum', 'count']) sum count ship_mode order_date First 2014-01-06 12.8 1 2014-01-11 9.9 1 2014-01-14 62.0 1 2014-01-15 149.9 1 2014-01-19 378.6 1 2014-01-26 152.6 1 . 

Ого, получается, что это так прыгает средний чек. Интересно, а какой был самый удачный день? Чтобы узнать, отсортируем получившийся датафрейм: выведем 10 самых денежных дней по выручке:

> orders.groupby(['ship_mode', 'order_date'])['sales'].agg(['sum']).sort_values(by='sum', ascending=False).head(10) sum ship_mode order_date Standard 2014-03-18 26,908.4 2016-10-02 18,398.2 First 2017-03-23 14,299.1 Standard 2014-09-08 14,060.4 First 2017-10-22 13,716.5 Standard 2016-12-17 12,185.1 2017-11-17 12,112.5 2015-09-17 11,467.6 2016-05-23 10,561.0 2014-09-23 10,478.6 

Команда разрослась, и её теперь неудобно читать. Чтобы упростить, можно разбить её на несколько строк. В конце каждой строки ставим обратный слеш \ :

> orders \ . .groupby(['ship_mode', 'order_date'])['sales'] \ . .agg(['sum']) \ . .sort_values(by='sum', ascending=False) \ . .head(10) sum ship_mode order_date Standard 2014-03-18 26,908.4 2016-10-02 18,398.2 First 2017-03-23 14,299.1 Standard 2014-09-08 14,060.4 First 2017-10-22 13,716.5 Standard 2016-12-17 12,185.1 2017-11-17 12,112.5 2015-09-17 11,467.6 2016-05-23 10,561.0 2014-09-23 10,478.6 

В самый удачный день — 18 марта 2014 года — магазин заработал 27 тысяч долларов с помощью стандартного класса доставки. Интересно, откуда были клиенты, сделавшие эти заказы? Чтобы узнать, надо объединить данные о заказах с данными о клиентах.

Объединяем несколько датафреймов

До сих пор мы смотрели только на таблицу с заказами. Но ведь у нас есть еще данные о клиентах интернет-магазина. Загрузим их в переменную customers и посмотрим, что они собой представляют:

> customers = pd.read_csv('customers.csv', index='id') > customers.head() name segment state city id CG-12520 Claire Gute Consumer Kentucky Henderson DV-13045 Darrin Van Huff Corporate California Los Angeles SO-20335 Sean O'Donnell Consumer Florida Fort Lauderdale BH-11710 Brosina Hoffman Consumer California Los Angeles AA-10480 Andrew Allen Consumer North Carolina Concord

Мы знаем тип клиента, место его проживания, его имя и имя контактного лица. У каждого клиента есть уникальный номер id . Этот же номер лежит в колонке customer_id таблицы orders . Значит мы можем найти, какие заказы сделал каждый клиент. Например, посмотрим, заказы пользователя CG-12520 :

> cust_filter = 'CG-12520' > orders.query('customer_id == @cust_filter') order_date ship_mode customer_id sales id CA-2016-152156 2016-11-08 Second CG-12520 993.90 CA-2017-164098 2017-01-26 First CG-12520 18.16 US-2015-123918 2015-10-15 Same Day CG-12520 136.72

Вернемся к задаче из предыдущего раздела: узнать, что за клиенты, которые сделали 18 марта заказы со стандартной доставкой. Для этого объединим таблицы с клиентами и заказами. Датафреймы объединяют с помощью методов .concat() , .merge() и .join() . Все они делают одно и то же, но отличаются синтаксисом — на практике достаточно уметь пользоваться одним из них.

Покажу на примере .merge() :

> new_df = pd.merge(orders, customers, how='inner', left_on='customer_id', right_index=True) > new_df.columns Index(['order_date', 'ship_mode', 'customer_id', 'sales', 'name', 'segment', 'state', 'city'], dtype='object')

В .merge() я сначала указал названия датафреймов, которые хочу объединить. Затем уточнил, как именно их объединить и какие колонки использовать в качестве ключа.

Ключ — это колонка, связывающая оба датафрейма. В нашем случае — номер клиента. В таблице с заказами он в колонке customer_id , а таблице с клиентами — в индексе. Поэтому в команде мы пишем: left_on='customer_id', right_index=True .

Решаем задачу

Закрепим полученный материал, решив задачу. Найдем 5 городов, принесших самую большую выручку в 2016 году.

Для начала отфильтруем заказы из 2016 года:

> orders_2016 = orders.query("order_date >= '2016-01-01' & order_date orders_2016.head() order_date ship_mode customer_id sales id 100041 2016-11-20 Standard BF-10975 328.5 100083 2016-11-24 Standard CD-11980 24.8 100153 2016-12-13 Standard KH-16630 63.9 100244 2016-09-20 Standard GM-14695 475.7 100300 2016-06-24 Second MJ-17740 4,823.1

Город — это атрибут пользователей, а не заказов. Добавим информацию о пользователях:

> with_customers_2016 = pd.merge(customers, orders_2016, how='inner', left_index=True, right_on='customer_id')

Cруппируем получившийся датафрейм по городам и посчитаем выручку:

> grouped_2016 = with_customers_2016.groupby('city')['sales'].sum() > grouped_2016.head() city Akron 1,763.0 Albuquerque 692.9 Amarillo 197.2 Arlington 5,672.1 Arlington Heights 14.1 Name: sales, dtype: float64

Отсортируем по убыванию продаж и оставим топ-5:

> top5 = grouped_2016.sort_values(ascending=False).head(5) > print(top5) city New York City 53,094.1 Philadelphia 39,895.5 Seattle 33,955.5 Los Angeles 33,611.1 San Francisco 27,990.0 Name: sales, dtype: float64

Возьмите данные о заказах и покупателях и посчитайте:

  1. Сколько заказов, отправлено первым классом за последние 5 лет?
  2. Сколько в базе клиентов из Калифорнии?
  3. Сколько заказов они сделали?
  4. Постройте сводную таблицу средних чеков по всем штатам за каждый год.

Через некоторое время выложу ответы в Телеграме. Подписывайтесь, чтобы не пропустить ответы и новые статьи.

Кстати, большое спасибо Александру Марфицину за то, что помог отредактировать статью.

Получить тип данных столбца в Pandas – Python

Pandas — популярная и мощная библиотека Python, обычно используемая для анализа и обработки данных. Он предлагает ряд структур данных, включая Series, DataFrame и Panel, для работы с табличными данными и данными временных рядов.

Pandas DataFrame — это двумерная табличная структура данных. В этой статье мы рассмотрим различные методы определения типа данных столбца в Pandas. Может быть множество случаев, когда нам нужно найти тип данных столбца в Pandas DataFrame. Каждый столбец в Pandas DataFrame может содержать разные типы данных.

Прежде чем двигаться дальше, давайте создадим образец фрейма данных, на котором нам нужно получить тип данных столбца в Pandas.

import pandas as pd # create a sample dataframe df = pd.DataFrame() print(df) 

Выход

Этот скрипт Python печатает созданный нами DataFrame.

 Vehicle name price 0 Supra 5000000 1 Honda 600000 2 Lamorghini 7000000 

Подходы, которые можно использовать для выполнения задачи, перечислены ниже.

Подходы

  • Использование атрибута dtypes
  • Использование select_dtypes()
  • Использование метода информации()
  • Использование функции описания()

Теперь давайте обсудим каждый подход и то, как их можно использовать для получения типа данных столбца в Pandas.

Способ 1: использование атрибута dtypes

Мы можем использовать атрибут dtypes для получения типа данных каждого столбца, присутствующего в DataFrame. Этот атрибут вернет серию с типом данных каждого столбца. Можно использовать следующий синтаксис:

df.dtypes

Return Type тип данных каждого столбца, присутствующего в DataFrame.

Алгоритм

  • Импортируйте библиотеку Pandas.
  • Создайте DataFrame с помощью функции pd.DataFrame() и передайте образец как словарь.
  • Используйте атрибут dtypes, чтобы получить типы данных каждого столбца в DataFrame.
  • Распечатайте результат, чтобы проверить типы данных каждого столбца.

Пример 1

# import the Pandas library import pandas as pd # create a sample dataframe df = pd.DataFrame() # print the dataframe print("DataFrame:\n", df) # get the data types of each column print("\nData types of each column:") print(df.dtypes) 

Выход

DataFrame: Vehicle name price 0 Supra 5000000 1 Honda 600000 2 Lamorghini 7000000 Data types of each column: Vehicle name object price int64 dtype: object 

Пример 2

В этом примере мы получаем тип данных одного столбца DataFrame.

# import the Pandas library import pandas as pd # create a sample dataframe df = pd.DataFrame() # print the dataframe print("DataFrame:\n", df) # get the data types of column named price print("\nData types of column named price:") print(df.dtypes['price']) 

Выход

DataFrame: Vehicle name price 0 Supra 5000000 1 Honda 600000 2 Lamorghini 7000000 Data types of column named price: int64 

Способ 2: использование select_dtypes()

Мы можем использовать метод select_dtypes() для фильтрации столбцов типа данных, которые нам нужны. На основе типов данных, предоставленных в качестве входных данных, метод select_dtypes() возвращает подмножество столбцов. Этот метод позволяет нам выбирать столбцы, принадлежащие определенному типу данных, а затем определять тип данных.

Алгоритм

  • Импортируйте библиотеку Pandas.
  • Создайте DataFrame, используя функцию pd.DataFrame(), и передайте данные в качестве словаря.
  • Распечатайте DataFrame, чтобы проверить созданные данные.
  • Используйте метод select_dtypes(), чтобы выбрать все числовые столбцы из DataFrame. Передайте список типов данных, которые мы хотим выбрать, в качестве аргумента, используя параметр include.
  • цикл по столбцам для перебора каждого числового столбца и печати его типа данных.

Пример

# import the Pandas library import pandas as pd # create a sample dataframe df = pd.DataFrame() # print the dataframe print("DataFrame:\n", df) # select the numeric columns numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns # get the data type of each numeric column for col in numeric_cols: print("Data Type of column", col, "is", df[col].dtype) 

Выход

DataFrame: Vehicle name price 0 Supra 5000000 1 Honda 600000 2 Lamorghini 7000000 Data Type of column price is int64 

Способ 3: Использование метода info()

Мы также можем использовать метод info() для нашей задачи. Метод info() предоставляет нам краткое описание DataFrame, включая тип данных каждого столбца. Можно использовать следующий синтаксис:

DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)

Возвращаемое значение Нет

Алгоритм

  • Импортируйте библиотеку Pandas.
  • Создайте DataFrame с помощью функции pd.DataFrame() и передайте приведенные выше данные в качестве словаря.
  • Распечатайте DataFrame, чтобы проверить созданные данные.
  • Используйте метод info(), чтобы получить информацию о DataFrame.
  • Выведите информацию, полученную с помощью метода info().

Пример

# import the Pandas library import pandas as pd # create a sample dataframe df = pd.DataFrame() # print the dataframe print("DataFrame:\n", df) # use the info() method to get the data type of each column print(df.info()) 

Выход

DataFrame: Vehicle name price 0 Supra 5000000 1 Honda 600000 2 Lamorghini 7000000 RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Vehicle name 3 non-null object 1 price 3 non-null int64 dtypes: int64(1), object(1) memory usage: 176.0+ bytes None 

Способ 4: использование функции описания()

Метод описать() используется для создания описательной статистики DataFrame, включая тип данных каждого столбца.

Алгоритм

  • Импортируйте библиотеку Pandas, используя оператор импорта.
  • Создайте DataFrame с помощью функции pd.DataFrame() и передайте данные в качестве словаря.
  • Распечатайте DataFrame, чтобы проверить созданные данные.
  • Используйте метод описать(), чтобы получить описательную статистику DataFrame.
  • Используйте параметр include метода описать() для значения «все», чтобы включить все столбцы в описательную статистику.
  • Получите тип данных каждого столбца в DataFrame, используя атрибут dtypes.
  • Распечатайте тип данных каждого столбца.

Пример

# import the Pandas library import pandas as pd # create a sample dataframe df = pd.DataFrame() # print the dataframe print("DataFrame:\n", df) # use the describe() method to get the descriptive statistics of the dataframe desc_stats = df.describe(include='all') # get the data type of each column dtypes = desc_stats.dtypes # print the data type of each column print("Data type of each column in the descriptive statistics:\n", dtypes) 

Выход

DataFrame: Vehicle name price 0 Supra 5000000 1 Honda 600000 2 Lamorghini 7000000 Data type of each column in the descriptive statistics: Vehicle name object price float64 dtype: object 

Заключение

Мы можем эффективно выполнять различные задачи по манипулированию и анализу данных, зная, как получить тип данных каждого столбца. Каждый подход имеет свои преимущества и недостатки в зависимости от используемого метода или функции. Вы можете выбрать нужный метод в зависимости от сложности выражения, которое вы хотите получить, и своих личных предпочтений в написании кода.

Все права защищены. © Linux-Console.net • 2019-2024

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *