Чем дерево отличается от графа
Перейти к содержимому

Чем дерево отличается от графа

  • автор:

Деревья — Теория графов

В этом уроке мы изучим еще один вид графов — древовидные. Именно этот вид графов активно используется в программировании — он связан с алгоритмами сортировки и поиска.

Деревья

Деревья — это связные графы без циклов. Их часто применяют в математике и информатике. Вот так они выглядят:

Как видно из примера, у деревьев определенная древовидная ветвистость, откуда они и получили свое название.

Благодаря связности и отсутствию циклов у деревьев есть ряд свойств:

  • В любом дереве есть ровно один путь из каждой вершины в каждую другую. Например, если есть два пути к вершине, то их можно объединить, чтобы получить цикл
  • У деревьев наименьшее количество ребер, которое только может быть у графа. При этом они остаются связными. Каждое ребро дерева — режущее, значит, не лежит в цикле
  • У деревьев наибольшее число ребер, которое может быть у графа без циклов. Добавление любого ребра к дереву создает ровно один цикл. Например, если добавить ребро между вершинами и , то получится цикл, включающий ребро и путь. Он гарантированно существует между и

Листья и индукция

С древовидными графами работает механизм индукции — это значит, что по каждому дереву с

вершинами можно перемещаться с шагом

Для этого нам понадобится лист в дереве — вершина, которая находится на концах каждого дерева.

Разберем следующую теорему: у каждого дерева с хотя бы двумя вершинами есть хотя бы два листа. Докажем это утверждение.

Рассмотрим любой путь максимальной длины в дереве. Поскольку у дерева две вершины и оно связное, этот путь должен существовать. У обеих конечных точек этого пути степень

в дереве. Их единственные соседи — вершины, которые располагаются перед ними на пути.

Обсудим, почему это работает именно так:

  • У конечных точек не может быть других соседей на пути, поскольку это создало бы цикл, что невозможно в дереве
  • У конечных точек не может быть других соседей вне пути, поскольку тогда мы могли бы использовать такого соседа для расширения пути. Только это невозможно, так как у пути уже максимальная длина

Воспользуемся индукцией, чтобы доказать, что каждое дерево с

Научный форум dxdy

Возможно ли (и как) объяснить разницу между графом и деревом на бытовом уровне? Как сразу понять — граф перед тобой или дерево? Картинки видел, но выразить отличие не могу. Спасибо Вам за Ваше время.

Re: Чем граф от дерева отличается?
08.07.2011, 17:38

Заслуженный участник

Последний раз редактировалось caxap 08.07.2011, 17:40, всего редактировалось 2 раз(а).

Дерево тоже граф; это граф без циклов. Проще не скажешь.
Re: Чем граф от дерева отличается?
08.07.2011, 17:40

Дерево — граф, обратное не всегда верно. По-моему, у дерева всегда лишь один вход в каждый узел — и вообще это имеет смысл говорить лишь для направленных графов (у которых на каждом ребре указано направление).
С уважением, Gortaur.
А вообще, граф его по воротнику гармошкой видно и входа у него два снизу (ноги), а у дерева один (ствол).

Re: Чем граф от дерева отличается?
08.07.2011, 17:47

Заслуженный участник

Gortaur в сообщении #466525 писал(а):
С уважением, Gortaur.

Тренируетесь?
Re: Чем граф от дерева отличается?
08.07.2011, 17:55

Итак, дерево — граф без циклов.

Что такое эти циклы? Типа что нельзя в тот же узел вернуться?

Re: Чем граф от дерева отличается?
08.07.2011, 18:06
bigarcus в сообщении #466520 писал(а):
Спасибо Вам за Ваше время.
Re: Чем граф от дерева отличается?
08.07.2011, 18:10

Заслуженный участник

Ещё связность забыли, и циклы рассматриваются без учёта направления рёбер.
Re: Чем граф от дерева отличается?
08.07.2011, 18:19

Заслуженный участник

Последний раз редактировалось caxap 08.07.2011, 18:36, всего редактировалось 3 раз(а).

bigarcus в сообщении #466535 писал(а):
Что такое эти циклы? Типа что нельзя в тот же узел вернуться?

$\begin</p>
<p>Нет (например, тогда у вас граф \draw (0,0)—(.6,0); \fill [color=black] (0,0) circle (2.5pt); \fill [color=black] (.6,0) circle (2.5pt); \end$» /> имеет цикл). Позвольте спросить: к чему все эти колхозно-бытовые упрощения? Вы собираетесь 5-летнему ребёнку рассказать основы теории графов?</p>
<p>Если нет, то почему бы просто не почитать учебник. Путь, цепь, цикл, связность, дерево. — довольно простые понятия и нет смысла их упрощать, когда ничего не стоит их понять их в строгом смысле.</p><div class='code-block code-block-7' style='margin: 8px 0; clear: both;'>
<!-- 7pocketpc -->
<script src=

Страница 1 из 1 [ Сообщений: 8 ]
Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Деревья и лес в теории графов

Дерево — это связный ациклический граф .Связность означает наличие путей между любой парой вершин, ацикличность — отсутствие циклов и то, что между парами вершин имеется только по одному пути.

Лес — упорядоченное множество упорядоченных деревьев.

Ориентированное (направленное) дерево — ацикличный орграф ( ориентированный граф , не содержащий циклов), в котором только одна вершина имеет нулевую степень захода (в неё не ведут дуги), а все остальные вершины имеют степень захода 1 (в них ведёт ровно по одной дуге). Вершина с нулевой степенью захода называется корнем дерева, вершины с нулевой степенью исхода (из которых не исходит ни одна дуга) называются концевыми вершинами или листьями.

Фомина Нюргуяна Владимировна

Содержимое разработки

Определение. Н–граф называется неориентированным деревом (или просто деревом) если он связен и не содержит циклов, а значит петель и кратных ребер. Дерево – это минимальный связный граф в том смысле, что при удалении хотя бы одного ребра он теряет связность. Наличие этих двух свойств (связность и отсутствие циклов) позволяет жестко связать число вершин и число ребер: в дереве с вершинами всегда ребер. Пример графа–дерева приведен на рисунке 3.13. В этом графе 8 вершин и 7 ребер. Ни одно ребро нельзя удалить из графа без того, чтобы он не потерял связность.

Вершина графа называется концевой или висячей, если В графе на рис. 3.13 концевыми являются вершины .

Неориентированный граф–дерево может быть превращен в ориентированный. Ориентация неориентированного дерева проводится следующим образом. В дереве выбирается вершина – так называемый корень дерева , и все ребра такого дерева с корнем ориентируются от этой вершины – корня. Для каждой выбранной вершины ориентация дерева единственна, все ребра ориентированы от корня. Если изменить направления всех ребер ориентированного дерева (к корню) получим ориентированный граф, который иногда называют сетью сборки.

В каждую вершину ориентированного дерева (за исключением корня) входит только одно ребро. Любое дерево можно ориентировать, выбрав в качестве корня любую его вершину.

Пусть – вершина дерева с корнем , – множество всех вершин, связанных с корнем цепями, проходящими через вершину . Это множество порождает подграф , который называется ветвью вершины в дереве с корнем . Например, ветвью вершины на рис. 3.13 является подграф , содержащий вершины и ребра .

Определение. Лес – несвязный н–граф без циклов. Связные компоненты леса являются деревьями. Любая часть леса также является лесом или деревом. В неориентированном дереве между любыми двумя вершинами существует цепь и притом только одна.

Рассмотрим пример использование графа–дерева для решения задачи поиска гамильтоновых путей на взвешенном по ребрам графе, приведенном на рис. 3.14. Веса можно рассматривать как некоторый эквивалент затрат, связанных с переходом по ребру из одной вершины в другую. Будем считать, что коммивояжер отправляется из вершины , с тем, чтобы посетить вершины и вновь вернуться в .

Для решения задачи удобно воспользоваться вспомогательным графом–деревом, который позволяет не только получить все гамильтоновы пути, но и отслеживать вес каждого пути. Методика построения следующая: выделяется исходная вершина и ей присваивается нулевой вес. На вспомогательном графе такая вершина помечается как . Из исходной вершины проводятся ребра во все смежные вершины, по которым маршрут еще не проходил. Новым вершинам присваиваются веса, равный затратам, которые необходимо понести для их достижения из исходной вершины. Для рассматриваемого примера результатом первого шага станут вершины . Далее точно таким же образом производятся шаги из вновь полученных вершин, пока эти пути не приведут в исходную вершину. Часть путей могут быть тупиковыми, так как не позволяют завершить маршрут не заходя дважды в одну и ту же вершину. В данном примере, в частности, последовательность вершин является тупиковой.

Рис. 3.15. Граф–дерево, соответствующий полному перебору вариантов построения гамильтонового цикла в исходном графе рис. 3.14.

Приведенный на рис. 3.15 граф–дерево построен для решения задачи поиска кратчайшего гамильтонового пути с использованием метода полного перебора вариантов.

Проблема, однако, в том, что при большом числе вершин полный перебор вариантов, это работа, требующая огромных вычислений. В частности, для полного графа с вершинами число маршрутов равно . Если 5!=120, то 10!=3 628 800. И все-таки перебор маршрутов иногда бывает полезен. Известен метод решения задачи, в соответствии с которым шаг за шагом строится не полное, а «усеченное» дерево – часть ветвей в процессе его «выращивания» отсекаются, а оставшиеся ветви ведут к решению. Этот метод называется методом ветвей и границ.

Идея метода достаточно очевидна – каким-либо образом выбрать на графе некоторый путь, желательно покороче, а затем отбрасывать все варианты, которые явно длиннее. Простейшим алгоритмом может быть продолжение движения из вершины, имеющей минимальный вес. В рассмотренном примере, после первого шага, движение должно быть продолжено из вершины с наименьшим весом , что приводит в вершины и .

Выигрыш состоит в том, что неподходящие варианты просматриваются не до конца, а лишь до того момента, когда становится ясно, что рассматриваемый вариант хуже имеющегося. Общая полезность такого подхода зависит от степени дифференциации различных маршрутов, и от удачности построения первого маршрута. Ясно также, что в самом плохом случае мы получим полный перебор вариантов.

-75%

Чем дерево отличается от графа

Поиск значения в BST занимает O(log n) времени. Это означает, что можно очень быстро найти требуемое значение среди миллионов или даже миллиардов записей.

Предположим, мы ищем узел со значением x. Чтобы быстро найти его в BST, воспользуемся следующим алгоритмом:

  1. Начать с корня дерева.
  2. Если x = значению узла: остановиться.
  3. Если x < значения узла: перейти к левому дочернему узлу.
  4. Если x > значения узла: перейти к правому дочернему узлу.
  5. Перейти к шагу 2.

При отсутствии уверенности в существовании искомого узла, необходимо изменить шаги 3 и 4 для остановки поиска.

Если хочешь подтянуть свои знания по алгоритмам, загляни на наш курс «Алгоритмы и структуры данных», на котором ты:

  • углубишься в теорию структур данных;
  • научишься решать сложные алгоритмические задачи;
  • научишься применять алгоритмы и структуры данных при разработке программ.

Реализация

Создание узла TreeNode идентично созданию узла ListNode . Единственное отличие в том, что вместо одного атрибута у нас два: left и right , которые ссылаются на левые и правые дочерние узлы.

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

Эти три типа обхода могут быть реализованы следующими методами:

  • с итерацией – использование цикла while и стека. В этом случае удаление данных возможно только с конца.
  • с рекурсией – использование функции, которая вызывает сама себя.

Есть четвертый тип обхода – порядок уровней (level-order traversal). Этот способ использует очередь (queue). Удаление данных здесь возможно только с начала.

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

Для первых трех типов обработки узлов паттерны практически идентичны. Просто выберем обход в порядке возрастания. Ниже разберем итеративный и рекурсивный методы для LC 94: Binary Tree Inorder Traversal, начиная с итеративной версии:

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

Как правило, графы представлены в виде матриц смежности (adjacency matrix). Так, у приведенного выше графа будет следующая матрица.

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

Каждая строка и столбец представляют собой узел. Единица в строке i и столбце j , или A_=1 , означает связь между узлом i и узлом j .

A_=0 означает, что узлы i и j не связаны.

Ни один из узлов в этом графе не связан с самим собой. Следовательно, диагональ матрицы равна нулю. Аналогично, A_ = A_ , потому что связи ненаправленны. То есть если узел A связан с узлом B , то B связан с A . В результате матрица смежности симметрична по диагонали.

Рассмотрим пример, который поможет нам понять описанную выше теорию.

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

На представленных рисунках мы видим взвешенный граф с направленными ребрами. Обратите внимание, что связи больше не симметричны – вторая строка матрицы смежности пуста, потому что у B нет исходящих связей. Числа от 0 до 1 отражают силу связи. Например, граф C влияет на граф A сильнее, чем A на C .

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

Реализация

Реализуем невзвешенный и неориентированный граф. Основной структурой класса является список списков Python. Каждый из них – это строка. Индексы в списке представляют собой столбцы. При создании объекта Graph необходимо указать количество узлов n, чтобы создать список списков. Затем мы можем получить доступ к соединению между узлами a и b с помощью self.graph[a][b] .

�� Деревья и графы: что это такое и почему их обязательно нужно знать каждому программисту

Чтобы ответить на вопрос LC 323: Количество связных компонентов, изучим каждый узел графа. Далее «посетим» соседние графы. Повторяем операцию до тех пор, пока не встретим только те узлы, которые уже были замечены программой. После этого проверим наличие в графе узлов, которые еще не были замечены. Если такие узлы присутствуют, то существует еще как минимум один кластер, поэтому нужно взять новый узел и повторить процесс.

def get_n_components(self, mat: List[List[int]]) -> int: """ Учитывая матрицу смежности, возвращает количество связанных компонентов """ q = [] unseen = [*range(len(mat))] answer = 0 while q or unseen: # Если все соседние узлы прошли через цикл, переходим к новому кластеру if not q: q.append(unseen.pop(0)) answer += 1 # Выбираем узел из текущего кластера focal = q.pop(0) i = 0 # Поиск связей во всех оставшихся узлах while i < len(unseen): node = unseen[i] # Если узел подключен к центру, добавляем его в очередь # чтобы перебрать его соседей # из невидимых узлов и избежать бесконечного цикла if mat[focal][node] == 1: q.append(node) unseen.remove(node) else: i += 1 return answer

Алгоритм действий:

  1. Строки 5-8: Создаем очередь ( q ), список узлов ( unseen ) и количество компонентов ( answer ).
  2. Строка 10: Запускаем цикл while , который выполняем до тех пор, пока в очереди есть узлы, которые нужно обработать или узлы, которые не были замечены.
  3. Строки 13-15: Если очередь пуста, удаляем первый узел из непросмотренных и увеличиваем количество компонентов.
  4. Строки 18-19: Выбираем следующий доступный узел в очереди ( focal ).
  5. Строка 22: Запускаем цикл while , который выполняем до тех пор, пока не обработаем все оставшиеся узлы.
  6. Строка 23: Даем имя текущему узлу для оптимизации кода.
  7. Строки 28-30: Если текущий узел подключен к центру, добавляем его в очередь узлов текущего кластера. Удаляем его из списка тех узлов, которые могут находиться в невидимом кластере. Благодаря этому действию, мы избегаем бесконечного цикла.
  8. Строки 31-32: Если текущий узел не подключен к focal (центру), переходим к следующему узлу.

Заключение

Графы и деревья – основные структуры данных. Спектр их применения огромен. Например, графы используются там, где необходим алгоритм поиска решений. Реальный пример их использования – sea-of-nodes JIT-компилятора.

Деревья используются тогда, когда мы должны произвести быстрое добавление/удаление объекта с поиском по ключу. Например, в различных словарях и индексах БД (Баз данных). Кроме того, деревья являются неотъемлемой частью случайного леса – алгоритма машинного обучения.

В следующей части материала мы приступим к изучению хэш-таблиц.

Базовый и продвинутый курс «Алгоритмы и структуры данных» включает в себя:

  1. Живые вебинары 2 раза в неделю.
  2. 47 видеолекций и 150 практических заданий.
  3. Консультации с преподавателями курса.

Материалы по теме

  • ❓ Зачем разработчику знать алгоритмы и структуры данных?
  • ☕ Распространенные алгоритмы и структуры данных в JavaScript: объекты и хеширование
  • 10 структур данных, которые вы должны знать (+видео и задания)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *